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ABSTRACT: A chiral aldehyde is rationally combined
with a Lewis acid and a transition metal for the first time
to form a triple catalytic system. This cocatalytic system
exhibits good catalytic activation and stereoselective-
control abilities in the asymmetric α-allylation reaction
of N-unprotected amino acid esters and allyl acetates.
Optically active α,α-disubstituted α-amino acids (α-AAs)
are generated in good yields (up to 87%) and
enantioselectivities (up to 96% ee). Preliminary mecha-
nism investigation indicates that the chiral aldehyde 3f
acts both as an organocatalyst to activate the amino acid
ester via the formation of a Schiff base, and as a ligand to
facilitate the nucleophilic attack process by coordinating
with π-allyl Pd(II) species.

Chiral aldehyde catalysis has gradually become a powerful
asymmetric synthesis strategy in amine chemistry.1 Using

this approach, various asymmetric organic reactions including
transamination,2 hydroamination3 and the α-functionalization
of amino acids4−7 can be realized. Among these, the direct
catalytic asymmetric α-functionalization of amino acids is
undoubtedly the most important, because of the exceptional
importance of amino acids in biological processes. To date,
four types of transformations have been successful disclosed in
this field. The earliest report concerned the aldol-based
addition of amino acids to aldehydes by employing chiral
pyridoxal-based enzymatic catalysis.4 More recently, our group
first reported a chiral aldehyde catalytic strategy involving the
reversible formation of an imine in asymmetric alkylation of 2-
aminomalonate.5 Subsequently, the catalytic asymmetric
activations of glycine derivatives by aldehydes were disclosed
by Zhao and Yuan6 and our group7 independently. These
works suggest that chiral aldehyde catalysis could be a powerful
means to achieve the asymmetric transformations of amino
acids and even amines, because the catalytically generated
nucleophilic carbanion in such syntheses can be trapped by a
variety of electrophiles. However, in its present form, chiral
aldehyde catalysis will only proceed in the presence of highly
active electrophiles, and thus the potential range of
applications is very limited.
Combinations of organic and transition metal catalysts have

been shown to provide a level of reactivity not achievable with
a single catalyst,8 and transition metals combined with chiral
organic catalysts such as quaternary ammonium salts,9

amines10 and acids11 have already become important chiral
catalytic systems. Thus, we envisioned that the combination of
a transition metal catalyst with a chiral aldehyde could
overcome the limitations currently associated with chiral
aldehyde catalysis. As exemplified in Figure 1, with a primary

amine substrate, the chiral aldehyde can generate a
nucleophilic α-imine carbanion intermediate (II), while the
transition metal can promote the formation of an active
electrophilic species (E+) simultaneously. The subsequent
asymmetric nucleophilic reaction between II and E+ affords a
chiral imine (III), whereupon, either by hydrolysis or amine
exchange, the chiral amine product (P*) is released and the
catalyst or imine I is regenerated. However, although this
concept provides a good blueprint for chiral aldehyde catalysis,
the combination of chiral aldehyde catalysts with transition
metals has not been explored.
Because of its exceptional ability to activate inert chemical

bonds and its suitable level of compatibility with other
catalysts, palladium has become an important transition metal
for use with various organic catalysts to realize challenging
organic transformations.12 Among these achievements, the
well-established π-allyl Pd(II) complexes13 inspired us to
evaluate our above proposal by combing chiral aldehyde and
palladium in direct α-allylation reaction of N-unprotected
amino acid esters and allyl acetates, which could provide one of
the most straightforward methods for the preparation of
optically active nonproteinogenic α,α-disubstituted α-amino
acids (α-AAs) containing chiral quaternary carbon centers.
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Figure 1. New catalytic strategy based on combining a chiral aldehyde
and a transition metal.
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However, it is a very challenging work because the undesired
N-allylation always exists in reaction. In fact, all of the reported
examples except one utilized N-protected amino acid esters as
reactants to avoid this side reaction.14,15

Initially, the direct α-allylation of methyl phenylalaninate
(1a) with cinnamyl acetate (2a) was assessed in the promotion
of a chiral aldehyde (3a) and palladium. Besides, the Lewis
acid ZnCl2 was added to stabilize the Schiff base and improve
the α-carbon acidity of amino ester via the formation of a Zn-
Schiff base complex.16 The base, 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU), was added to accelerate the deprotonation
process. As expected, the desired product 4a could be obtained
in 13% yield and 58% enantioselective excess (ee) (Table 1,

entry 1), while the N-allylation product became the major. The
results obtained using other chiral aldehydes (3b, 3c) indicated
that this type of catalyst was not a suitable promoter for this
transformation. Employing 3d, a chiral BINOL-analogue
bearing two hydroxyl groups, increased both the yield and
enantioselectivity of 4a, to 30% and 73% ee, respectively
(Table 1, entry 4). Based on this outcome, the catalysts 3e−
3m were also screened, and the results demonstrated that 3f
gave the best enantioselectivity (Table 1, entry 6) while 3i
produced the highest yield (Table 1, entry 9). Using 3f as the
catalyst, other reaction conditions were also optimized. For

example, the alkoxy screening showed that ethyl phenyl-
alaninate (1b) gave better yield and enantioselectivity (Table
1, entry 14); while lowering the reaction temperature could
inhibit the N-allylation side reaction and improve the yield as
well as enantioselectivity of 4a greatly (Table 1, entry 18 and
19). Bases, Lewis acids and phosphine ligands were then
screened, but no better results were obtained (see Supporting
Information). The chiral aldehyde 3i, which gave the best
yield, was then used to promote this reaction under the above
optimized reaction conditions, giving product 4a in 85% yield
and 87% ee (Table 1, entry 20). In terms of the
enantioselectivities, the reaction conditions depicted in entry
19 was utilized in the following substrate scope investigation.
Various substituted allyl acetates were subsequently used as

acceptors. The allyl acetates bearing substituted phenyls gave
the corresponding products 4f−4l in good yields and excellent
enantioselectivities, and the electronic properties and position
of substituents on the phenyl rings were found not to
significantly affect the experimental outcomes. Nonphenyl
aryls, including naphthyl, furyl, thienyl and indolyl-substituted
allyl acetates, also produced products 4m−4p in good yields
and enantioselectivities. Alkyl, alkenyl and alkynyl-substituted
allyl acetates were then examined. The yield was found to
decrease when phenyl acetenyl-substituted allyl acetate was
used as the acceptor (Table 2, 4t), while all the other allyl

acetates gave the corresponding products 4q−4s in good yields
and excellent enantioselectivities. The allyl-substituted chiral
amino acid ester 4q represents one of the most useful building
blocks for the preparation of PLG peptidomimetics.14c

The amino acid substrate scope was then investigated
(Table 3). Phenylglycines were found to be good substrates in
this reaction, while steric effects were determined to modify

Table 1. Reaction Condition Optimizationa

entry 3 4 time (h) yield (%)b ee (%)c

1 3a 4a 3.5 13 58
2 3b 4a 18 trace NDd

3 3c 4a 18 trace NDd

4 3d 4a 18 30 73
5 3e 4a 2 44 50
6 3f 4a 1.5 35 75
7 3g 4a 1.0 55 59
8 3h 4a 4 30 60
9 3i 4a 1.5 74 62
10 3j 4a 4 41 44
11 3k 4a 3.5 40 25
12 3l 4a 0.5 60 64
13 3m 4a 5 29 59
14 3f 4b 2 40 82
15 3f 4c 1 35 80
16 3f 4d 3.5 37 79
17 3f 4e 1 38 77
18 3f 4b 4 60 89e

19 3f 4b 48 74 94f,g

20 3i 4b 48 85 87f,g

aReaction conditions: D,L-1 (0.3 mmol), 2a (0.2 mmol), 3 (0.02
mmol), dppp (0.02 mmol), [Pd(C3H5)Cl]2 (0.01 mmol), ZnCl2
(0.04 mmol), DBU (0.2 mmol), in PhCH3 (1.5 mL) at 80 °C.
bIsolated yield. cDetermined by chiral HPLC. dND = not determined.
eAt 50 °C. fAt 0 °C. g40 mol % ZnCl2.

Table 2. Scope of Allyl Acetatesa

aReaction conditions: D,L-1b (0.3 mmol), 2 (0.2 mmol), 3f (0.02
mmol), dppp (0.02 mmol), [Pd(C3H5)Cl]2 (0.01 mmol), ZnCl2
(0.08 mmol), DBU (0.2 mmol), in PhCH3 (1.5 mL), at 0 °C.
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the yields. As an example, product 4u was generated in good
yield, but 4v was only obtained in a 25% yield, although both
were generated in high enantioselectivities. Ethyl phenyl-
alaninates bearing otho-, meta- or para-substituted phenyls gave
excellent enantioselectivities. A moderate yield was obtained
with ethyl 2-F phenylalaninate (Table 3, 4w) and the yields
increased when the substituent was moved to the meta- or
para-position of the phenyl ring (Table 3, 4x and 4y). Other
aryl-substituted amino acid derivatives, including ethyl 2-
naphthylalaninate, tryptophanate and homophenylalaninate,
were also introduced as donors, and the corresponding
products 4z−4ab were obtained in 44%−71% yields and
with 62%−89% ees. Alkyl-substituted amino acids were also
observed to react with phenyl allyl acetate (2a) smoothly,
giving products 4ac−4af in moderate yields and high-to-
excellent enantioselectivities. However, only a 21% yield
resulted from the reaction of ethyl valinate and 2a (Table 3,
4ae), possibly due to the steric effect of the isopropyl group.
Amino acids containing thioether, ester and amino groups
were also applicable to this reaction, giving products 4ag−4ai
in moderate yields and high enantioselectivities. Two amino
acid substrates that did not give satisfactory yields in
association with 3f were re-examined using the chiral aldehyde
3i as the catalyst. The yield of 4z was increased from 44% to
87%, while that of 4af was increased from 39% to 64%, and the
enantioselectivities of these two products were maintained at a

high level. Generally, the N-allylation side reaction is one of the
main factors affecting the yields of products 4. For example,
the N-allylation byproducts 4z′ and 4ac′ were isolated in 43%
and 13% yields, respectively. The absolute configuration of
products 4ab was established on the basis of the comparison of
the literature data with the experimental values (see
Supporting Information). The stereochemistries of compounds
4 were assigned by analogy with that of 4ab.
To the best of our knowledge, the triple catalytic system

consisting of a chiral aldehyde, a Lewis acid and a transition
metal has not been explored previously. To gain insight into
this multicooperative catalytic process, control experiments
were carried out. As shown in Scheme 1, the model reaction

does not work without palladium catalyst (Scheme 1a), so, a
classic Tsuji−Trost allylation mechanism is possible.12,13

Besides, in the absence of ZnCl2, this reaction can proceed
successfully, but much lower yield and enantioselectivity was
obtained (Scheme 1b vs Table 1, entry 18). This result
indicates that it is possible to form a zinc-Schiff base complex
(I) in this reaction, because the formation of this complex can
stabilize the Schiff base and further improve the α-carbon
acidity of the amino acid ester.16 Thus, facilitate the Schiff base
formation and subsequent deprotonation processes. With these
information in hand, a possible reaction mechanism is
summarized in Figure 2. First, a Schiff base is generated
from chiral aldehyde 3f and amino acid ester 2b, and then
combines with ZnCl2 to form the Zn-Schiff base complex (I).
This Zn-Schiff base intermediate is deprotonated by DBU and
transformed into the active enolate intermediate (II). At the
same time, an electrophilic π-allyl Pd(II) complexes (E) is
generated from allyl acetate and palladium by oxidative
addition. Subsequently, the enolate intermediate II attacks
the π-allyl Pd(II) complex E via an inter- or intramolecular
manner. As results, the Zn-Schiff base complex (III) is
produced and the active palladium catalyst is regenerated.
Finally, the product 4b is released from Zn-Schiff base (III) by
amine exchange or hydrolysis. In order to clarify what manner
is favored in the nucleophilic attack step, three modified chiral
aldehydes were used as catalysts in the model reaction
(Scheme 1c). We found compound 4b was obtained in 18%
yield and 84% ee when using chiral aldehyde 3n, but none of

Table 3. Scope of Amino Acid Estersa

aReaction conditions: D,L-1 (0.2 mmol), 2a (0.2 mmol), 3f (0.02
mmol), dppp (0.02 mmol), [Pd(C3H5)Cl]2 (0.01 mmol), ZnCl2
(0.08 mmol), DBU (0.2 mmol), in PhCH3 (1.5 mL), at 0 °C. bAt 30
°C. cUsing L-amino ester 1 as reactant. dYield of the N-allylation
byproduct. eUsing 3i as catalyst. fUsing D-amino ester 1 as reactant.

Scheme 1. Control Experiments
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the desired product was generated with chiral aldehydes 3o
and 3p. These results indicate that the presence of a hydroxyl
group at the 2′ position of the BINOL aldehyde (3) is crucial
to this reaction. One of the most reasonable interpretations is
that a temporary intramolecular transition state I (Figure 2, TS
I) can be formed from the enolate intermediate (II) and the π-
allyl Pd(II) species E via an anion exchange between 2′
hydroxyl and acetate anion. Thus, the intramolecular
nucleophilic attack becomes a dominant pathway.
In conclusion, this work demonstrated the first catalytic

strategy based on a combination of a chiral aldehyde, a Lewis
acid and a transition metal. Using this triple catalytic system,
the α-allylation reactions of N-unprotected amino esters and
allyl acetates proceeded smoothly, giving chiral nonproteino-
genic α,α-disubstituted α-amino acids (α-AAs) in good yields
and excellent enantioselectivities. The proposed mechanism
demonstrates that the presence of a 2′ hydroxyl group is vital
to the success of this reaction, possibly because this hydroxyl
group coordinates with the π-allyl Pd(II) species, thus
facilitating the reaction process.
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