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Synthetic Methods To Pyrroline Architectures
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Direct Amination of Unacivated C-H Bonds
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Direct Amination of Unacivated C-H Bonds
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Direct Amination of Unacivated C-H Bonds
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Direct Amination of Unacivated C-H Bonds
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Direct Amination of Aromatic C-H Bonds
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Competition Experiment and KIE
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Proposed Catalytic Cycle
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Different Chemistry of Triflic Amides
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Long-Distance Aryl Migration
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OEtimization of Reaction Conditions
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5 AgOAc PhI(OTFA), 31
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Oetimization of Reaction Conditions
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Ph N AgOAc, ligand o TFAO N
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Entry2 Ligand Additive Solvent Yield (%) ® N
12 L2 - DCE 37 —N ,_1\N /
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/7 N\_(
14 L4 - DCE 21 N
—N L2 N
11 {
15 L3 Cs,CO, DCE 12 Bu Bu
16 L3 KO'Bu DCE 36
17 L3 Li,CO, DCE 60
18 L3 K,CO, DCE 65
19 L3 K,CO, DCE/PhCI 75

2 Reaction condtions: substrate (0.1 mmol), catalyst (20 mol%), ligand (20 mol%),
oxidant (2.0 equiv.), additive (2.0 equiv.), DCE (2.0 mL), 120 °C, 1 h. b The yield
was determined by *H NMR of the crude reaction mixture with CH,Br, as internal
standard.
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Evaluating Different Amides
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Ag-Catalyzed Aryl Migration
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2 Yields of isolated products. P Yields of isolated corresponding alcoholysis products,
which were easily formed upon purification by flash column chromatography (silica gel).
¢120°C, 10 h.
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Ag-Catalyzed Aryl Migration
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2 Total yields of two isomers. P Yields of isolated corresponding alcoholysis products, which
were easily formed upon purification by flash column chromatography (silica gel). ¢ The ratio

of the isomers was determined by 1H or 1°F NMR of the crude reaction mixture.
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Alcoholysis and Cyclization and Control Experiments
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Proposed Mechanism
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Selective C-C bond activation/cleavage has attracted much attention in

recent years. Not only is it one of the most challenging themes in
fundamental organic chemistry, but it also represents a powerful,
straightforward, and atom-economic strategy for constructing new
organic compounds through a completely new pathway based on
reorganization of the skeletons of easily available compounds,
differentiating it from conventional organic syntheses. During the past few
decades, many achievements in transition-metal-catalyzed C-C cleavage
have been made, starting from strained and unstrained compounds. In
the absence of transition metal catalysts, C-C could be cleaved and
transformed through radical and cationic intermediates. Among different
strategies to approach direct C—C cleavage of unstrained molecules, the
migration of carbon-based groups is common and important to facilitate

the C-C cleavage and new C-C formation.




In summary, we have developed a novel silver-catalyzed long-distance aryl
migration of y,y-disubstituted triflic amides through C-C bond cleavage,
accompanied by the formation of new C-O/C-N bonds. More electron-rich
aryl groups showed better performance than electron-deficient aryl motifs
during the migration. The migration products were easily converted to y-
hydroxy amines and tetrahydroquinoline derivatives under mild conditions.
According to the control experiments, this transformation was proposed to
proceed through a silver-promoted radical pathway. Studies to clearly
understand the mechanism and explore the potential applications are

underway.




