Literature Report

Silver-Catalyzed Substrate Controlled C-N Formation Reactions of Triflic Amides

Reporter : Shu-Bo Hu Checker : Zhang-Pei Chen Date : 2015-12-15

Shi, Z.-J. *et al. J. Am. Chem.* Soc. **2015**, *1*37, 14586.

Peking University

2

Silver-Catalyzed Direct Amination of Unacivated C-H Bonds

Silver-Catalyzed Long-Distance Aryl Migration from C to N

.....

3 Summary

Pyrroline Structural Active Compounds

Synthetic Methods To Pyrroline Architectures

Direct Amination of Aromatic C-H Bonds

Competition Experiment and KIE

Proposed Catalytic Cycle

Different Chemistry of Triflic Amides

Long-Distance Aryl Migration

Previous Aryl Migration from Vicinal Carbon to Carbon

This work: Aryl Migration from Carbon Center to Nitrogen Center

Shi, Z.-J. et al. J. Am. Chem. Soc. 2015, 137, 14586.

Optimization of Reaction Conditions

Ph Ph	H Catalyst, L1 Oxidant, DCE 120 °C, 1h	→ TFAO N Ph 2a	
Entry ^a	Catalyst	Oxidant	i Yield (%) ^b
1	AgOAc	-	0
2	AgOAc	Oxone	0
3	AgOAc	PhI(OAc) ₂	0
4	AgOAc	$K_2S_2O_8$	0
5	AgOAc	PhI(OTFA) ₂	31
6	Pd(OAc) ₂	PhI(OTFA) ₂	Trace
7	CuOAc	PhI(OTFA) ₂	0
8	AuCl	PhI(OTFA) ₂	0
9	Ag ₂ O	PhI(OTFA) ₂	29
10	AgNO ₃	PhI(OTFA) ₂	17
11	Ag ₂ CO ₃	PhI(OTFA) ₂	28

Shi, Z.-J. et al. J. Am. Chem. Soc. 2015, 137, 14586.

Optimization of Reaction Conditions

	Ph Ph 1a	H AgOAc, lig Phl(OTFA) ₂ , a Solvent, 120	additive °C, 1h Ph 2a	Tf N Ph	
Entry ^a	Ligand	Additive	Solvent	Yield (%) ^b	
12	L2	-	DCE	37	
13	L3	-	DCE	38	
14	L4	-	DCE	21	
15	L3	Cs ₂ CO ₃	DCE	12	^t Bu
16	L3	KO′Bu	DCE	36	
17	L3	Li ₂ CO ₃	DCE	60	
18	L3	K ₂ CO ₃	DCE	65	
19	L3	K ₂ CO ₃	DCE/PhCI	75	

^a Reaction conditions: substrate (0.1 mmol), catalyst (20 mol%), ligand (20 mol%), oxidant (2.0 equiv.), additive (2.0 equiv.), DCE (2.0 mL), 120 °C, 1 h. ^b The yield was determined by ¹H NMR of the crude reaction mixture with CH₂Br₂ as internal standard.

Evaluating Different Amides

Ag-Catalyzed Aryl Migration

^{*a*} Yields of isolated products. ^{*b*} Yields of isolated corresponding alcoholysis products, which were easily formed upon purification by flash column chromatography (silica gel). ^{*c*} 120 °C, 10 h.

Ag-Catalyzed Aryl Migration

Entry	Substrate	R¹	R ²	Major migrating group	Yield (%)	Ratio (%) ^c
1	5a	Н	CI	Ph	65 ^a	1.4/1
2	5b	Н	CF_3	Ph	49 ^{a, b}	5.9/1
3	5c	Ме	CF_3	$4-\text{MeC}_6\text{H}_4$	58 ^{a, b}	25/1
4	5d	^{<i>t</i>} Bu	CF_3	4- ^t BuC ₆ H ₄	51 ^{<i>b</i>}	-
5	5e	^{<i>t</i>} Bu	CI	4- ^t BuC ₆ H ₄	71 ^{a, b}	3.4/1
6	5f	<i>t</i> Bu	Н	4- ^t BuC ₆ H ₄	74 ^a	4.5/1

^a Total yields of two isomers. ^b Yields of isolated corresponding alcoholysis products, which were easily formed upon purification by flash column chromatography (silica gel). ^c The ratio of the isomers was determined by ¹H or ¹⁹F NMR of the crude reaction mixture.

Shi, Z.-J. et al. J. Am. Chem. Soc. 2015, 137, 14586.

Alcoholysis and Cyclization and Control Experiments

Shi, Z.-J. et al. J. Am. Chem. Soc. 2015, 137, 14586.

Proposed Mechanism

Summary

Shi, Z.-J. et al. Nat. Commun. 2014, 5, 4707; Shi, Z.-J. et al. J. Am. Chem. Soc. 2015, 137, 14586.

Selective C-C bond activation/cleavage has attracted much attention in recent years. Not only is it one of the most challenging themes in fundamental organic chemistry, but it also represents a powerful, straightforward, and atom-economic strategy for constructing new organic compounds through a completely new pathway based on reorganization of the skeletons of easily available compounds, differentiating it from conventional organic syntheses. During the past few decades, many achievements in transition-metal-catalyzed C-C cleavage have been made, starting from strained and unstrained compounds. In the absence of transition metal catalysts, C-C could be cleaved and transformed through radical and cationic intermediates. Among different strategies to approach direct C-C cleavage of unstrained molecules, the migration of carbon-based groups is common and important to facilitate the C-C cleavage and new C-C formation.

In summary, we have developed a novel silver-catalyzed long-distance aryl migration of γ, γ -disubstituted triflic amides through C-C bond cleavage, accompanied by the formation of new C–O/C–N bonds. More electron-rich aryl groups showed better performance than electron-deficient aryl motifs during the migration. The migration products were easily converted to yhydroxy amines and tetrahydroquinoline derivatives under mild conditions. According to the control experiments, this transformation was proposed to proceed through a silver-promoted radical pathway. Studies to clearly understand the mechanism and explore the potential applications are underway.