Literature Report V

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet–Spengler Reaction of Indolyl Dihydropyridines

Reporter : Xiao-Yong Zhai

Checker: Xin-Wei Wang

Date : 2018-04-02

You, S.-L. *et al. Angew. Chem. Int. Ed.* **2017**, *56*, 7440. You, S.-L. *et al. Angew. Chem. Int. Ed.* **2018**, *57*, 2653.

3 Asymmetric Dearomatization of Indolyl Dihydropyridines

CV of Shu-Li You

Education:

- 1992–1996 B.S., Nankai University
- 1996–2001 Ph.D., SIOC (Prof. Li-Xin Dai)

□ 2001–2004 Postdoc., The Scripps Research Institute

(Prof. Jeffery W. Kelly)

2004–2006 Principal Investigator, Genomics Institute

of the Novartis Research Foundation, San Diego

2006–Present Professor, SIOC

Research:

★ Enantioselective C-H bond direct functionalization processes

★ Catalytic asymmetric dearomatization reactions

Introduction

Higuchi. K. *et al. Nat. Prod. Rep.* **2005**, *22*, 761. Yamada. F. *et al. Nat. Prod. Rep.* **2004**, *21*, 278.

Pictet-Spengler reaction

The Pictet-Spengler reaction is an organic reaction used to convert a β -arylenylamine and an aldehyde or ketone to a tetrahydroisoquinoline using an acid catalyst.

Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030.

Pictet-Spengler reaction-Second Mechanism

Thiourea derivatives catalyzed asymmetric PS reactions

Jacobsen, E. N. et al. J. Am. Chem. Soc. 2004, 126, 10558.

51-94% yield, 85-99% ee

Jacobsen, E. N. et al. J. Am. Chem. Soc. 2007, 129, 13404.

$$R_{1} \xrightarrow{R_{2}} t-Bu \\ N \\ H \\ H \\ H \\ Me \\ Me \\ Ph \\ Cat. 1: R_{1} = R_{2} = i-Bu \\ cat. 2: R_{1} = CH_{3}, R_{2} = n-C_{5}H_{11}$$

CPA catalyzed asymmetric PS reactions

 $Ar^{1} = 2,4,6-({}^{i}Pr)_{3}C_{6}H_{2}$

 $Ar^2 = 3,5-(CF_3)_2C_6H_3$

CPA catalyzed asymmetric PS reactions

Wang, Y. et al. Chem. Eur. J. 2012, 18, 3148.

Dixon, D. J. et al. Org. Lett. 2013, 15, 2946.

Chiral Carboxylic Acids and Squaramide-Cinchona

N H

" R'

up to 95% yield, 99% ee

N H

RCHO

+

F₃C

MeC

chiral squaramide-cinchona

PG

RCM/Isomerization/PS Cascade

You, S.-L. et al. Org. Lett. 2012, 14, 5022.

Isomerization/asymmetric PS cascade

You, S.-L. et al. Org. Biomol. Chem. 2013, 11,1602.

Asymmetric Pictet-Spengler Reaction of Indolyl Dihydropyridines

You, S.-L. et al. Angew. Chem. Int. Ed. 2017, 56, 7440.

Condition Optimization

	N H 2a	N Ac	cat. 1 (10 mol%) toluene, rt			Ar 0 0 0 0 0 0 0 0 0 0 0 0 0
	Entry ^a	Catalyst	<i>t</i> (h)	Yield (%)	ee (%)	Ar
_	1	1a	3.5	66	38	(S)-BINOL-CPA 1a . Ar = 2.4.6-(<i>i</i> Pr) ₂ -C _e H
	2	1b	10	42	10	1b , Ar = 2-naphthyl 1c , Ar = SiPh ₃
	3	1c	3.5	56	31	1d , Ar = 4-Ph- C_6H_4 1e , Ar = 9-anthryl
	4	1d	3.5	10	14	1f , Ar = $3,5-(CF_3)_2-C_6H_3$
	5	1e	3.5	81	25	Ar
	6	1f	3.5	80	11	
	7	1g	3.5	70	35	OH Ar
	8	1h	3.5	80	62	
	9	1i	3.5	69	20	1g , Ar = 1-naphthyl
_	10	1j	3.5	81	40	1h , Ar = 2,4,6-(<i>i</i> Pr) ₃ -C ₆ H 1i , Ar = 4-Cl-C ₆ H ₄
-						1], Ar = $3,5-(CF_3)_2-C_6H_3$

^a Reaction conditions: **2a** (0.1 mmol), **1** (10 mol%), additives (50 mg), solvent (2.0 mL), room temperature.

Condition Optimization

cat. 1h (10 mol%) solvent, additive, RT			H H J Ac Ja		Ar O > P = O O H Ar 1h , Ar = 2,4,6-(<i>i</i> Pr) ₃ -C ₆ H ₂	
Entry ^a	Solvent	<i>t</i> (h)	Additive	Yield (%)	ee (%)	
1	toluene	3.5	-	80	62	
2	benzene	3.5	-	77	62	
3	DCM	3.5	-	83	55	
4	CHCl ₃	3.5	-	95	47	
5	CCI ₄	3.5	-	85	72	
6	CCI ₄	12	3 Å MS	90	91	
7	CCI ₄	12	4 Å MS	90	89	
8	CCI ₄	8	5 Å MS	82	74	
9 ^b	CCI ₄	36	3 Å MS	45	92	

^a Reaction conditions: **2a** (0.1 mmol), **1** (10 mol%), additives (50 mg), solvent (2.0 mL), room temperature. ^b The reaction mixture was stirred at 0 °C.

Substrate Scope and Transformations of Products

3m, R = H, 92% yield, 94% *ee* **3n**, R = *p*-OMe, 92% yield, 77% *ee* **3o**, R = *p*-Me, 94% yield, 66% *ee*

3p, R = *o*-Me, 91% yield, 80% *ee* **3q**, R = *p*-*n*Bu, 85% yield, 72% *ee* **3r**, R = *p*-*t*Bu, 95% yield, 92% *ee* **3s**, R = *m*,*m*-(*t*Bu)₂, 89% yield, 84% *ee* **3t**, R = *p*-Ph, 90% yield, 83% *ee* **3u**, R = *p*-CF₃, 95% yield, 87% *ee* **3v**, R = *p*-CI, 92% yield, 99% *ee* **3w**, R = *p*-CI, 92% yield, 97% *ee* **3x**, R = *p*-Br, 90% yield, 98% *ee* **3y**, R = *p*-I, 91% yield, 87% *ee*

Hsung, R. P. et al. Org. Lett. 2003, 5, 4709.

Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines

Previous work

You, S.-L. et al. Angew. Chem. Int. Ed. 2018, 57, 2653.

Condition Optimization

N H H 1a	∧_N		; (10 mol%) I (2.0 equiv) CH ₂) ₂ CI, RT,	t t H	2a	Ar O O O O O O O O O O O O O O O O O O O
Entry ^a	С	Н	<i>t</i> (h)	Yield (%)	ee (%)	C1 , Ar = 9-phenanthryl C2 Ar = $2.4.6 \cdot (iPr)_{0} \cdot C_{0}H_{0}$
1	C1	H1	24	83	81	C3 , Ar = 9-anthryl C4 Ar = 1-naphthyl
2	C2	H1	24	53	59	C5 , Ar = SiPh ₃ C6 Ar = $3.5-(CF_2)_2-C_2H_2$
3	C3	H1	24	70	70	C7 , Ar = $4 - NO_2 - C_6H_4$
4	C4	H1	24	79	72	
5	C5	H1	24	31	43	RO
6	C6	H1	24	45	22	N H
7	C7	H1	24	68	51	H1 , R = Et H2 R = Me
8	C1	H2	36	37	74	H3 , R = <i>t</i> -Bu
9	C1	H3	48	18	77	

^a Reaction conditions: **1a** (0.1 mmol), **C** (10 mol%), **H** (0.2 mmol), solvent (2.0 mL).

Condition Optimization

Entry ^a	Solvent	<i>t</i> (h)	T(°C)	Yield (%)	ee (%)
1	CI(CH ₂) ₂ CI	24	RT	83	81
2	EtOAc	24	RT	72	85
3	THF	24	RT	57	84
4	1,4-dioxane	24	RT	66	84
5	toluene	24	RT	62	69
6	EtOAc	12	40	76	85
7	EtOAc	12	60	62	81
8 ^b	EtOAc	36	40	82	93

^a Reaction conditions : **1a** (0.1 mmol), **C** (10 mol%), **H** (0.2 mmol), solvent (2.0 mL). ^b 50 mg 3 Å MS were added and 6 mL of EtOAc were used.

2j, 87% yield, 94% ee

2k, 78% yield, 95% ee

21, 63% yield, 95% ee

2m, 78% yield, 95% ee

2n, 72% yield, 95% ee

20, 65% yield, 94% ee

2p, 52% yield, 91% ee

2q, R = H 79% yield, 93% *ee* **2r**, R = Me 77% yield, 95% *ee* **2s**, R = OMe 86% yield, 95% *ee* **2t**, R = *t*-Bu 75% yield, 94% *ee* **2u**, R = F 55% yield, 93% *ee* **2v**, R = Br 54% yield, 92% *ee*

Proposed catalytic cycle

Summary

You, S.-L. et al. Angew. Chem. Int. Ed. 2017, 56, 7440.

You, S.-L. et al. Angew. Chem. Int. Ed. 2018, 57, 2653.

Synthetic studies of polycyclic indole derivatives have attracted plenty of research interests due to the widespread occurrence of such structural cores in natural products as well as their biological activities. Pictet-Spengler reactions are widely recognized as one of the most efficient and straightforward methods to afford tetrahydro- β -carbolines. Traditionally, tryptamine derivatives and carbonyl compounds are employed as the substrates of Pictet–Spengler reactions. As part of our ongoing research on catalytic asymmetric dearomatization (CADA) reactions, we recently developed an efficient asymmetric synthesis of tetrahydro- β -carbolines through chiral phosphoric acid (CPA)-catalyzed sequential enamine isomerization/Pictet–Spengler reaction of indolyl dihydropyridines 1.

Spiroindolenine has been generally regarded as a key intermediate in Pictet-Spengler reactions. To capture and further manipulate the spiroindolenine species would allow unprecedented access to novel polycyclic indole derivatives. In this regard, we envisioned that the analogous reaction of indolyl dihydropyridine, which bears a onemethylene prolonged tether, would afford spiroindolenine, from which an in situ transfer hydrogenation with Hantzsch ester might lead to tetrahydrospiro[indoline-3.1'-quinolizine]. Herein, we report the results of the study on this cascade reaction catalyzed by a chiral phosphoric acid.

In summary, we have developed a highly efficient synthesis of enantioenriched spiroindolines through a chiral phosphoric acid catalyzed enamine isomerization/spirocyclization/transfer hydrogenation sequence. This reaction proceeds under mild reaction conditions to afford novel spiroindolines in good yields (up to 88%) with excellent enantioselectivity (up to 97% *ee*). Further exploration on the reactivity of spiroindolenines is currently underway in our laboratory.

Thanks

for your attention