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Introduction

Me

(-)-Thapsigargin

O A efficient and scalable synthesis of thapsigargin from
commercially available (R)-(-)-carvone;

O The classic photosantonin rearrangement and precisely
choreographed installation of the multiple oxygenations.




Retrosynthetic Analysis of (-)-Thapsigargin
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Scalable Synthesis of (=)-Thapsigargin by Baran
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Robinson Annulation
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Scalable Synthesis of (=)-Thapsigargin by Baran
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Scalable Synthesis of (=)-Thapsigargin by Baran
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Retrosynthetic Analysis of (-)-Thapsigargin
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Scalable Synthesis of (—)-Thapsigargin by Evans
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Pinacol Coupling Reaction
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Scalable Synthesis of (—)-Thapsigargin by Evans
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Mukaiyama Hydration
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Scalable Synthesis of (—)-Thapsigargin by Evans
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Summary

¢ 11 steps and 0.14% overall yield;
| ¢ photosantonin rearrangement;
. Baran’ work ¢ precisely choreographed installation of the multlple
' oxygenations.

, € 12 steps and 5.80% overall yield;
' Evans’ work @ pinacol coupling reaction;
’ ¢ Mukaiyama hydration.
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The First Paragraph

The structure of thapsigargin was elucidated in 1978,
but its use can be anecdotally traced back to ancient times
as a popular folk medicine. As one of the most highly
oxidized members of the venerable guaianolide
sesquiterpene family, represents a classic target for total
synthesis. One measure of the difficulty in approaching a
total synthesis of this natural product is the percentage of
skeletal carbon atoms that bear an oxygen atom (53%). For
reference, notoriously difficult targets such as ingenol,

phorbol and Taxol, range from 25 to 42%.
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The First Paragraph

For this reason, the sole successful effort to reach
thapsigargin required 42 steps, respectively. Thapsigargin
IS a potent inhibitor of the SERCA-pump protein, with
potential for applications in a variety of medicinal areas. In
this article, the execution of a concise, scalable, two-phase
total synthesis of thapsigargin is presented featuring a
single-step construction of the carbon framework followed
by precisely choreographed oxygenation events.

20



The Last Paragraph

The route described here benefits from an effective
strategy rather than a recent methodological advance, with
Sharpless AD being the newest method employed. Rather, it
was the twophase approach that enabled scalable access to
these highly oxygenated and complex natural products.
Indeed, a 2015 review on these terpenes stated: “Approaches
utilizing semisynthesis or total synthesis are currently far from
being economically feasible.” Total synthesis is now a
potentially viable option for the scalable procurement of

thapsigargin with deep-seated modifications.
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