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Abstract: The first direct and asymmetric a-aryloxylation of
cyclic ketones via enol catalysis has been achieved using
quinones as the reaction partners. Catalytic amounts of
a phosphoric acid promote the exclusive formation of a,a-
disubstituted ketones from the corresponding a-substituted
ketones in good yields and enantioselectivities (up to
96.5:3.5 er). Preliminary mechanistic experiments suggest that
this reaction proceeds via a proton-coupled electron transfer
(PCET) followed by radical recombination.

Single-electron oxidation of enamines is a well-established
activation mode for organocatalytic enantioselective a-func-
tionalizations of simple aldehydes and ketones.[1] The oxida-
tion of the corresponding a-branched ketones has so far not
been reported because of the intrinsic limitations of enamine
catalysis. Our group recently introduced enol catalysis as
a versatile concept for the direct and selective a-functional-
ization of carbonyl compounds by in situ generated enols.[2]

Accordingly, in the presence of a chiral phosphoric acid, a-
branched ketones form the higher substituted enol, thereby
enabling enantioselective access to the corresponding a,a-
disubstituted ketones. A variety of catalytic asymmetric C@C
and C@N bond-forming reactions utilizing this approach have
been reported.[3] To further expand the scope of this
activation mode, we envisioned a reaction of a-branched
ketones with 1,4-benzoquinone, anticipating a 1,4-addition to
the corresponding a-arylated product. Similar addition reac-
tions have been reported with aldehydes, b-keto esters,
substituted indoles, and 2-naphthol derivatives by using
chiral secondary amines, cinchona alkaloids, or phosphoric
acids as the catalysts.[4] However, to our surprise, the reaction
of 2-phenylcyclohexanone (1a) and 1,4-benzoquinone (2a) in
the presence of diphenyl phosphate (DPP) as catalyst did not
provide products 3 or 4 but instead gave the a-aryloxylated
product (5a, Figure 1).

Related products have previously only been observed as
intermediates or side products in the oxidation of silyl vinyl
ethers to enones using 2,3-dichloro-5,6-dicyano-1,4-benzoqui-
none (DDQ) as the oxidant.[5] However, these reactions
require preformed enol equivalents, strong oxidants, and have
not been approached in a catalytic or an enantioselective
fashion.

We also evaluated the catalytic potential of some other
commonly used organic acids with 2-phenylcyclohexanone
(1a) and 1,4-benzoquinone (2a) as the starting materials.[6]

Interestingly, whereas catalytic amounts of DPP delivered
exclusively the desired product, all other tested acids resulted
in lower yields and selectivity towards aryloxylation, even at
higher catalyst loadings. Notably, excess amounts of the
quinone can be reduced with only a minor loss in yield;
however, kinetic experiments suggest that it is involved in the
rate-determining step (see below).[6]

We next turned our attention towards the generality of
this transformation by testing various branched ketones
under our reaction conditions (Scheme 1). Whereas a-aryl
ketones readily reacted (5a–5d), a-alkyl ketones resulted in
only trace amounts of the desired product, even after
prolonged reaction times and elevated temperatures. In
contrast to ortho substituents, meta and para substituents on
the a-aryl group were well-tolerated (5a–5d), although an
electron-withdrawing substituent did lead to a diminished
yield and selectivity: product 5c could only be isolated as an
inseparable 5:1 mixture of 1,6- and 1,4-addition products.
Unfortunately, only traces of the targeted products could be
obtained when ketones of different ring sizes were employed
as starting materials.[6] Interestingly, an indanone-derived b-
keto ester gave exclusively the oxidized 1,4-addition product
6 as an inseparable mixture with 1,4-hydroquinone. The
stereoelectronic properties of the quinone partner also
proved to be important for the outcome of the reaction.
Electron-poor quinones such as 2,6- and 2,5-dichlorobenzo-
quinone readily reacted to form the corresponding aryloxy-
lated products (5e and 5 f). In contrast, electron-rich quinones
such as 1,4-naphthoquinone or 2,6-dimethylbenzoquinone did
not result in any conversion of the starting material. Addi-
tionally, chloranil, a strong oxidizing agent, gave no con-
version of the starting material, presumably because of steric
repulsions. Full, albeit unselective, conversion was observed
with DDQ; however, no detectable amount of the desired
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Figure 1. Initial discovery of a phosphoric acid catalyzed a-aryloxylation
of a-branched ketones.
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product was formed. Gratifyingly, the reaction with the 4-
aminophenol-derived quinone formed exclusively the desired
C@O bond, and product 5g could be isolated in 44% yield.

In light of the uniqueness and potential utility of the
method, we then attempted to develop an asymmetric variant
of the transformation, with 2-phenylcyclohexanone (1a) and
1,4-benzoquinone (2a) employed as model substrates.[6]

Gratifyingly, by using 1,1’-binaphthol (BINOL) derived
phosphoric acids, the catalyst loading could successfully be
reduced to 5 mol%. Further screening of reaction conditions
and catalysts led to catalyst 7, which gave the desired product
5a in 67 % yield and 96:4 er.[6, 7] In all cases, products resulting
from 1,4-conjugate addition were only obtained in trace
amounts, and the lower yields of product 5a observed in some
cases can be attributed to the formation of uncharacterized
side products.

With the optimized conditions in hand, we shifted our
attention towards the scope of this asymmetric a-aryloxyla-
tion with 1,4-benzoquinone (2a ; Scheme 2). Similar to the
non-enantioselective transformation depicted in Scheme 1, a-
aryl ketones were the preferred substrates and readily reacted
under the optimized conditions. Substituents in the para
position of the a-aryl group were well-tolerated and the
corresponding products could be isolated in similar yields as
with the model substrate 1a, but with a slight erosion of
enantioselectivity (5h–5j). Substituents in the meta position
caused a decrease in yield, but a slight increase in the
enantioselectivity (5k–5m). 2-(2-Naphthyl)cyclohexanone
was also well-tolerated under the reaction conditions (5n,
72% yield, 93.5:6.5 er). In contrast, ortho-substituted a-aryl
ketones did not result in any conversion of the starting
material, presumably because of increased steric interaction
with the catalyst.

A scale-up experiment using 500 mg of ketone 1 a
proceeded smoothly and without deterioration of the yield
or enantioselectivity (Scheme 3). As anticipated, the intro-
duced hydroquinone moiety can be converted into a syntheti-
cally useful hydroxy group under oxidative conditions similar
to those required to remove p-methoxyphenyl (PMP) pro-
tecting groups.[8] Furthermore, a diastereoselective reduction
of ketone 3a gave alcohol 9 as a single diastereomer. Both
reactions proceeded without any erosion of enantioselectivity.

A plausible reaction pathway is depicted in Figure 2. The
catalytic cycle is initiated by the phosphoric acid catalyzed
enolization of the ketone. This step is less likely to be rate-
limiting due to the absence of a kinetic resolution and the
change in the kinetic profile with different quinone concen-
trations.[6] Subsequent coordination of the quinone derivative
through hydrogen bonding gives complex A.[9] This complex
presumably undergoes a proton-coupled electron transfer
(PCET) to furnish diradical complex B.[10–12] Subsequent

Scheme 1. Scope of the a-aryloxylation of a-branched ketones. Yields
of isolated products are reported. Reactions were performed using
ketone 1 (0.2 mmol), diphenyl phosphate (0.1 mmol), and quinone 2
(0.6 mmol) in anhydrous toluene at room temperature. [a] Isolated as
an inseparable mixture with the corresponding hydroquinone.

Scheme 2. Scope of the asymmetric 1,6-addition of a-branched
ketones to 1,4-benzoquinone. Yields of isolated products are reported.
If not otherwise indicated, reactions were performed using ketone
1 (0.2 mmol), (R)-7 (5 mol%), and 1,4-benzoquinone (2a ; 0.6 mmol)
in anhydrous benzene at 0 88C.

Scheme 3. Scale-up and derivatization of the products.
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formation of the product and release of the catalyst occurs by
radical recombination.

An ionic mechanism is less likely, as a negative 1 value in
a Hammett plot was obtained, which is in agreement with an
oxidation being the rate-limiting step (Figure 3).[6] A hydro-
gen atom transfer (HAT) mechanism is less likely on the
grounds of the thermochemistry of the proposed mechanism:
The O@H bond dissociation free energy (BDFE) of a phenol,
as an extreme case of an enol, is 88.3 kcalmol@1 and the
semiquinone O@H BDFE is 65.2 kcal mol@1 (both values in
DMSO), thus making the proposed PCET highly favorable.[13]

Furthermore, the proposed mechanism is in good agreement
with extensive kinetic studies by Mayr et al. which showed

that the formation of similar intermediates presumably
proceeds by a SET/inner-sphere electron-transfer mechanism
(INES).[5c]

In conclusion, we have serendipitously discovered and
further developed the first direct, catalytic, and asymmetric a-
aryloxylation of cyclic a-branched ketones. Various a-sub-
stituted ketones underwent selective formal 1,6-additions to
benzoquinones in moderate to good yields and with good to
excellent enantioselectivities. Preliminary mechanistic studies
are in good agreement with a PCET mechanism. Our findings
significantly broaden the scope of enol catalysis and inspire
various other enantioselective transformations involving
enol-derived radical intermediates.
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