Literature Report IX

Synthesis of β-Aminoboronates by Copper(I)-Catalyzed Addition of Diborylalkanes to Imines

Reporter : Shubo Hu

Checker: Xiaoyong Zhai

Date : 2017-9-18

Cho, S. H. *et al. Org. Lett.* **2016**, *18*, 1210. Cho, S. H. *et al. Angew. Chem. Int. Ed.* **2017**, *56*, 11584.

Contents

2 Addition of DiboryImethane to Aldimines

CV of Seung Hwan Cho

Education:

2001–2005	B.S. in Chemistry KAIST
2005–2006	Researcher at KAIST
2006–2011	Ph.D. in Chemistry KAIST (Prof. Sukbok Chang)
2011–2012	Postdoc. at KAIST (Prof. Sukbok Chang)
2012–2014	Postdoc. at UC Berkeley (Prof. John F. Hartwig)
2014–2017	Assistant Professor Dept. of Chemistry, POSTECH

Seung Hwan Cho

Research:

- Transition-metal-free C-C/C-B bond formation reactions;
- Transition-metal-catalyzed chemo-, regio-, and stereoselective C-C bond formation reactions.

Fernández, E. et al. Chem. Commun. 2012, 48, 3769.

Hirano, K.; Miura, M. et al. J. Am. Chem. Soc. 2013, 135, 4934.

Lin, G.-Q. et al. Org. Lett. 2014, 16, 1426.

Takeda, Y.; Minakata, S. et al. Chem. Sci. 2016, 7, 6141.

Cho, S. H. et al. Org. Lett. 2016, 18, 1210.

Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56, 11584.

Addition of Diborylmethane to Aldimines

			^t Bu [M]/L, base ^(R) ,S NaBO₃•4H₂C		^t Bu 4H₂O ^(R) ↓	^t Bu ♥ ^(R) ♥	
	Ph H 1a	+ pinB Bpin - 1.5 eq. 2a	toluene, 50 °C	HN Bpin THF/H2	20, rt Ph 4a		
Entry ^a	Base (3 eq.)	[M] (10 mol%)	L (10 mol%)	Conv. (1a) (%)	Yield (4a) (%)	dr (4a)	
1	LiO ^t Bu			<1	<1	n.d.	
2	NaO ^t Bu			100	96	77/23	
3	KO ^t Bu			100	86	54/46	
4	LiO ^t Bu	[Rh(COD)Cl] ₂	dppben	39	15	83/17	
5	LiO ^t Bu	Cu(OTf) ₂	dppben	78	66	97/3	
6	LiO ^t Bu	Cu(OTf) ₂	dppb	56	54	95/5	
7	LiO ^t Bu	Cu(OTf) ₂	PPh_3	33	15	96/4	
8	LiO ^t Bu	Cu(OTf) ₂	PCy ₃	62	50	95/5	
9	LiO ^t Bu	CuCl	dppben	90	61	98/2	
10	LiO ^t Bu	CuBr	dppben	100	91	99/1	
11		CuBr	dppben	<1	<1	n.d.	
12	LiO ^t Bu	CuBr		50	24	n.d.	

Addition of Diborylmethane to Aldimines

Addition of Diborylmethane to Aldimines

Entry ^a	[Cu]	Solvent	Yield (4a) (%)	dr (4a)	Ee (%)
1	CuBr	dioxane	94	14/1	98
2	CuBr	THF	93	11/1	99
3	CuBr	Toluene	<1	n.d.	n.d.
4	CuBr	dioxane/toluene (1:1)	98 (98)	>20/1	99
5	CuCl	dioxane/toluene (1:1)	95	>20/1	98
6	Cul	dioxane/toluene (1:1)	71	>20/1	97
7	Cu(NCMe) ₄ PF ₆	dioxane/toluene (1:1)	94	>20/1	99
8	Cu(OAc) ₂	dioxane/toluene (1:1)	94	>20/1	98

Entry ^a	R ¹	R ²	Yield (%)	dr	Ee (%)
1	Н	Ме	92 (6a)	3.2/1	94 (67)
2	Н	Pr	67 (6b)	3.5/1	98 (91)
3	Н	C_2H_4Ph	53 (6c)	4.9/1	98 (94)
4	4-Me	Ме	72 (6d)	3.6/1	96 (76)
5	4-Cl	Ме	65 (6e)	3.2/1	96 (77)

Summary

Cho, S. H. et al. Org. Lett. 2016, 18, 1210; Angew. Chem. Int. Ed. 2017, 56, 11584.

Chiral organoborons are an important class of synthetic intermediates which can undergo a range of carbon–carbon and carbon–heteroatom bond-forming reactions by stereospecific couplings. The synthesis of such compounds containing a nitrogen functionality at the β -position of the chiral boron unit is of significant importance in synthetic chemistry because they serve as versatile building blocks in many biologically active compounds. Consequently, several synthetic methods have been developed to afford chiral β -aminoborons. In this context, several elegant catalytic enatioselective methods have emerged for the preparation of chiral β -aminoborons under mild reaction conditions. Despite these advances, the development of a new approach from readily accessible imines remains elusive but is highly desirable.

In summary, we have developed a highly diastereo- and enantioselective, copper-catalyzed 1,2-addition of 1,1-bis[(pinacolato)boryl]alkanes to Nprotected imines. With a CuBr/chiral phosphoramidite catalyst and LiO^tBu, the reactions proceed to generate a broad range of b-aminoboronate esters with contiguous stereocenters in high yields. The products are highly synthetically useful, as demonstrated by further functionalizations of the Bpin unit to form new C-O or C-C bonds upon C-B bond cleavage. Efforts to expand the scope of the diastereo- and enantiostereoselective 1,2-addition employing 1,1-bis[(pinacolato)boryl]alkanes are currently underway in our laboratory.