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• Intermolecular C-C formation has been less explored  

• The reaction largely requires stoichiometric radical traps 
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Entry Deviations from Above Yield (%)a 

1 10 mol% NiBr2(dtbbpy) none 

2 No NMP none 

3 No MnO2 20 

4 Under O2 instead of air tracec 

5 1 equiv H2O none 

6 5 mol% NiBr2(diglyme) 54 

7 2 equiv Mn 43 

8 1 equiv Ph(i-PrO)SiH2 28 

9 No NiBr2(diglyme) none 

10 No Fe(dmp)3 none 

a 0.1 mmol scale, yield determined by FID using dodecane as an internal standard. b 0.3 mmol scale, isolated yield. c Under 

an O2 balloon, the olefin was predominantly consumed to hydration via Drago-Mukaiyama Hydration. 
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a 0.3 mmol scale, isolated yield, reaction time 16 h. 1.5 mL 1,2-DCE and 1.5 mL NMP. N2 atmosphere for 1.5 h, then open to air. All 

substrates gave >20:1 branched: linear (b:l) ratio except where notated. b 0.1 mmol scale, isolated yield. c Run under an air ballon. 
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Olefin Scope 



a 0.3 mmol scale, isolated yield, reaction time 16 h. 1.5 mL 1,2-DCE and 1.5 mL NMP. N2 atmosphere for 1.5 h, then open to air. All 

substrates gave >20:1 branched : linear ratio except where notated.  
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Deviations from Standard Conditions 

Entry Deviations from Above Yield (%)a 

1 None 77 (72)b 

2 Fe(dpm)3 instead of Mn(dmp)3 0 (20)c 

3 no Mn(dmp)3 none 

4 no Ni(acac)2 20 (trace)d 

5 no K2CO3 55 

6 no HFIP 36 

7 no propylene carbonate (PC) 55 

8 i-PrOH instead of HFIP 54 

9 Ph(i-PrO)SiH2 instead of PhSiH3 50 (27)c 

a 0.1 mmol scale, yield determined by GC-FID using 1,3,5-trimethoxybenzene as an internal standard. b 0.3 mmol scale, 

isolated yield 15:1 branched (b) : linear (l) product. c No HFIP. d Using 2-iodoethyl benzoate of 35a. dpm = dipivaloylmethane; 

HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol; 1,2-DCE = 1,2-dichloroethane; PC = propylene carbonate. 
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a 0.3 mmol scale, isolated yield, b:l = branched/linear ratio. b Reaction run under an air balloon. c 5 equiv of olefin added in two portions (2.5 

equiv at start and 2.5 equiv at 24 h). 
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a 0.3 mmol scale, isolated yield, b:l = branched/linear ratio. b 0.1 mmol scale. c Isolated as a mixture with hydrogenation, yield determined by 

NMR. Further purified by prep HPLC. 
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Olefins represent versatile feedstocks and intermediates for chemical 

synthesis. Metal-hydride hydrogen atom transfer (MHAT) has emerged as a 

useful reaction platform for the branched-selective hydrofunctionalization of 

olefins. Its high chemoselectivity for olefins and mild reaction conditions 

have allowed its deployment in medicinal chemistry and natural product 

synthesis. The bulk of these transformations involve carbon−heteroatom 

bond formation, whereas intermolecular C−C formation has been less 

explored and has largely required stoichiometric radical traps like π-

electrophiles. Pioneering advances in the formation of C−C bonds are 

represented by hydrocyanations and hydrooximation from Carreira and 

Boger. More recently, Baran and co-workers developed a powerful variant of 

the Giese reaction as well as a creative protocol for hydromethylation. 

Finally, our group and others have investigated the branched-selective 

hydroarylation of olefins using MHAT, establishing olefins as progenitors of 

arylated quaternary centers. 

The first paragraph  
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The last paragraph  
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In summary, we have reported a Markovnikov-selective hydroalkylation of 

unbiased olefins using diverse alkyl iodides and benzyl bromides. The 

combination of Mn mediated MHAT catalysis and Ni catalysis enable an 

unprecedented synthesis of quaternary carbons. The mild reaction 

conditions and robust functional group compatibility support its utility for 

late stage modification of small molecules. Efforts are underway to expand 

this chemistry to more sterically congested centers and complex natural 

products. 
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