Literature Report 6

Hydroalkylation of Olefins to Form Quaternary Carbons

Reporter: Zhou-Hao Zhu Checker: Xiao-Qing Wang Date: 2019-6-10

Green, S. A.; Huffman, T. R.; McCourt, R. O.; Puyl, V.; Shenvi, R. A. J. Am. Chem. Soc. **2019**, 141, 7709

2 Hydroarylation of Olefins to Form Quaternary Carbons

3 Hydroalkylation of Olefins to Form Quaternary Carbons

CV of Prof. Ryan Ashok Shenvi

Background:

1999-2003 B.S., Pennsylvania State University (R.L. Funk)

2003-2008 Ph.D., The Scripps Research Institute (P.S. Baran)

2008-2010 Postdoctoral Fellow, Harvard University (E.J. Corey)

2010-2014 Assistant Professor, The Scripps Research Institute

2014-now Associate Professor, The Scripps Research Institute

Ryan Ashok Shenvi

Research Interests:

- > Total synthesis of neurotrophic terpenes and unusual pharmacophores
- Hydrogen atom transfer

Introduction

Shenvi, R. A. et al. Chem. Rev. 2016, 116, 8912

Introduction

A. Brønsted acid proton transfer to an alkene (R^{1-3} = alkyl)

B. Metal hydride hydrogen atom transfer to an alkene (R^{1-3} = alkyl)

- Intermolecular C-C formation has been less explored
- The reaction largely requires stoichiometric radical traps

Shenvi, R. A. et al. Chem. Rev. 2016, 116, 8912

Intermolecular C-C Formation

Carreira, E. M. et al. Angew. Chem. Int. Ed. 2007, 46, 4519

Carreira, E. M. et al. J. Am. Chem. Soc. 2009, 131, 13214

Intermolecular C-C Formation

Boger, D. L. et al. Org. Lett. 2012, 14, 1428

Baran, P. S. et al. J. Am. Chem. Soc. 2014, 136, 1304

Proposed Mechanism

Baran, P. S. et al. J. Am. Chem. Soc. 2014, 136, 1304

Intermolecular C-C Formation

Daran, F. S. et al. Nature **2014**, 570, 345

Baran, P. S. et al. J. Am. Chem. Soc. 2015, 137, 8046

12-85% yield

Herzon, S. B. et al. J. Am. Chem. Soc. 2016, 138, 8718

A Dual Catalytic Platform for Hydroarylation

Green, S. A.; Shenvi, R. A.* et al. J. Am. Chem. Soc. 2018, 140, 11317

Deviations from Standard Conditions

Entry	Deviations from Above	Yield (%) ^a
1	10 mol% NiBr ₂ (dtbbpy)	none
2	No NMP	none
3	No MnO ₂	20
4	Under O ₂ instead of air	trace ^c
5	1 equiv H ₂ O	none
6	5 mol% NiBr ₂ (diglyme)	54
7	2 equiv Mn	43
8	1 equiv Ph(<i>i</i> -PrO)SiH ₂	28
9	No NiBr ₂ (diglyme)	none
10	No Fe(dmp) ₃	none

^a 0.1 mmol scale, yield determined by FID using dodecane as an internal standard. ^b 0.3 mmol scale, isolated yield. ^c Under an O₂ balloon, the olefin was predominantly consumed to hydration via Drago-Mukaiyama Hydration.

Proposed Mechanism

Olefin Scope^a

^a 0.3 mmol scale, isolated yield, reaction time 16 h. 1.5 mL 1,2-DCE and 1.5 mL NMP. N₂ atmosphere for 1.5 h, then open to air. All substrates gave >20:1 branched: linear (*b*:*I*) ratio except where notated. ^b 0.1 mmol scale, isolated yield. ^cRun under an air ballon.

Alkyl Halide Scope^a

^a 0.3 mmol scale, isolated yield, reaction time 16 h. 1.5 mL 1,2-DCE and 1.5 mL NMP. N₂ atmosphere for 1.5 h, then open to air. All substrates gave >20:1 branched : linear ratio except where notated.

Hydroalkylation

Transition metal-catalyzed alkyl-alkyl bond formation:

Fu, G. C. et al. Science 2017, 356, 7230

A Dual Catalytic Platform for Hydroalkylation?

Construction of Quaternary Carbons

Fu, G. C. et al. J. Am. Chem. Soc. 2013, 135, 624

Construction of Quaternary Carbons

Gong, H. et al. J. Am. Chem. Soc. 2015, 137, 11562

Gong, H. et al. J. Am. Chem. Soc. 2018, 140, 14490

Construction of Quaternary Carbons

Baran, P. S. et al. Angew. Chem. Int. Ed. 2019, 58, 2454

Reductive Coupling with Olefins

Classical C=O addition - Stoichiometric metals:

Krische, M. J. et al. Science 2016, 354, 300

Nickel Catalysis with Olefins

Nickel catalysis with organometallic reagent:

Nickel catalysis with olefins:

Fu, G. C. et al. Nature 2018, 563, 379

Proposed Mechanism

Fu, G. C. et al. Nature 2018, 563, 379

A Dual Catalytic Platform for Hydroalkylation

Green, S. A.; Shenvi, R. A.* et al. J. Am. Chem. Soc. 2019, 141, 7709

Deviations from Standard Conditions

PMBO J 35a (1 equiv)	+ Me TBSO 36 (2.5 equiv) Mn(dpm) ₃ (20 mol%), Ni(acac) ₂ (2.5 mol%), PhSiH ₃ (3 equiv), HFIP (2 equiv), K ₂ CO ₃ (1 equiv), 1,2-DCE/PC, RT open to air	→ PMBO TBSO Me 35b (77%)
Entry	Deviations from Above	Yield (%) ^a
1	None	77 (72) ^b
2	Fe(dpm) ₃ instead of Mn(dmp) ₃	₃ 0 (20) ^{<i>c</i>}
3	no Mn(dmp) ₃	none
4	no Ni(acac) ₂	20 (trace) ^d
5	no K ₂ CO ₃	55
6	no HFIP	36
7	no propylene carbonate (PC)	55
8	i-PrOH instead of HFIP	54
9	Ph(<i>i</i> -PrO)SiH ₂ instead of PhSiH	H ₃ 50 (27) ^c

^{*a*} 0.1 mmol scale, yield determined by GC-FID using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*} 0.3 mmol scale, isolated yield 15:1 branched (*b*) : linear (*I*) product. ^{*c*} No HFIP. ^{*d*} Using 2-iodoethyl benzoate of **35a**. dpm = dipivaloyImethane; HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol; 1,2-DCE = 1,2-dichloroethane; PC = propylene carbonate.

Proposed Mechanism

Olefin Scope^a

^a 0.3 mmol scale, isolated yield, *b*:*I* = branched/linear ratio. ^b Reaction run under an air balloon. ^c 5 equiv of olefin added in two portions (2.5 equiv at start and 2.5 equiv at 24 h).

Alkyl Halide Scope^a

^a 0.3 mmol scale, isolated yield, *b*:*I* = branched/linear ratio. ^b 0.1 mmol scale. ^c Isolated as a mixture with hydrogenation, yield determined by NMR. Further purified by prep HPLC.

Summary

Green, S. A.; Shenvi, R. A.* et al. J. Am. Chem. Soc. 2018, 140, 11317

Green, S. A.; Shenvi, R. A.* et al. J. Am. Chem. Soc. 2019, 141, 7709

The first paragraph

Olefins represent versatile feedstocks and intermediates for chemical synthesis. Metal-hydride hydrogen atom transfer (MHAT) has emerged as a useful reaction platform for the branched-selective hydrofunctionalization of olefins. Its high chemoselectivity for olefins and mild reaction conditions have allowed its deployment in medicinal chemistry and natural product synthesis. The bulk of these transformations involve carbon-heteroatom bond formation, whereas intermolecular C-C formation has been less explored and has largely required stoichiometric radical traps like π electrophiles. Pioneering advances in the formation of C-C bonds are represented by hydrocyanations and hydrooximation from Carreira and Boger. More recently, Baran and co-workers developed a powerful variant of the Giese reaction as well as a creative protocol for hydromethylation. Finally, our group and others have investigated the branched-selective hydroarylation of olefins using MHAT, establishing olefins as progenitors of arylated quaternary centers.

In summary, we have reported a Markovnikov-selective hydroalkylation of unbiased olefins using diverse alkyl iodides and benzyl bromides. The combination of Mn mediated MHAT catalysis and Ni catalysis enable an unprecedented synthesis of quaternary carbons. The mild reaction conditions and robust functional group compatibility support its utility for late stage modification of small molecules. Efforts are underway to expand this chemistry to more sterically congested centers and complex natural products.

