Palladium-Catalyzed Asymmetric Benzylic Alkylation Reactions

Reporter: Hong-Qiang Shen Checker: Cong Liu Date: 2016/07/12

Masahiro Miura *et al.* Angew. Chem. Int. Ed. **2016**, 55, 6973.

Masahiro Miura Osaka University

Contents

Asymmetric Benzylic Alkylation with Primary Benzylic Phosphates

Asymmetric Benzylic Alkylation with Secondary Benzylic Carbonates

Introduction

Prof. Masahiro Miura

Education:

1978 B. A. Osaka University Faculty of Engineering

1983 Ph. D. Osaka University Graduate School

1990-1991 Humboldt Fellow with Prof. K. Griesbaum, Karlsruhe

University

1998-2005 Associate Professor, Osaka University (Japan)

2005- Professor, Osaka University (Japan)

Introduction

> Ionization of the electrophile can be challenging since the π -benzyl intermediate is *dearomatized*.

Trost, B. M. et al. Angew. Chem. Int. Ed. 2014, 53, 2826.

Introduction

> As for Electrophiles containing a *naphthalene* or *heteroaromatic* moiety, the barrier to ionization and dearomatization is lower.

Trost, B. M. et al. J. Am. Chem. Soc. 2012, 134, 5778.

Initial Experiment

Trost, B. M. et al. J. Am. Chem. Soc. 2012, 134, 5778.

Optimization Experiments

Entry	Cs_2CO_3 (equiv)	Solvent	T (°C)	Yield (%) ^a	Ee (%) ^b
1	0	Toluene	75	10	78
2	0.1	Toluene	75	25	91
3	0.1	DCM	25	23	97
4	0.5	DCM	25	63	97
5°	0.6	DCM	25	90	96
6 ^d	0.6	DCM	25	17	88

Reaction conditions: **4a** (0.2 mmol), **2** (1.0 equiv), (η^3 -C₃H₅)PdCp (5.0 mol%), **L1** (6.0 mol%), ^{*t*}BuOH (5.0 equiv), 20 h. ^{*a*} Isolated yield. ^{*b*} Determined by chiral HPLC. ^{*c*} **2** (1.5 equiv). ^{*d*} Reaction run without ^{*t*}BuOH.

Electron-Rich Phosphates

Entry	L	Solvent	T (°C)	Yield (%) ^a	Ee (%) ^b
1	L1	DCM	25	55	-94¢
2	L2	DCM	25	53	-54¢
3	L3	DCM	25	47	83
4	L4	DCM	25	28	59

Reaction conditions: **5a** (0.2 mmol), **2** (1.5 equiv), $(\eta^3-C_3H_5)PdCp$ (5.0 mol%), **L** (6.0 mol%), TEA (1.2 equiv), ^{*t*}BuOH (5.0 equiv), 16 h. ^{*a*} Isolated yield. ^{*b*} Determined by chiral HPLC. ^{*c*} Reaction run with (*S*,*S*)-**L**.

Entry	Solvent	T (°C)	Yield (%) ^a	Ee (%) ^b
1	DCM	25	55	-94e
2	Toluene	25	40	96
3	DME	25	23	96
4	THF	25	42	95
5	Dioxane	25	57	96
6	Dioxane	50	77	93
7¢	Dioxane	50	83	93
8 <i>c,d</i>	Dioxane	50	34	93

Reaction conditions: **5a** (0.2 mmol), **2** (1.5 equiv), $(\eta^3-C_3H_5)PdCp$ (5.0 mol%), **L** (6.0 mol%), TEA (1.2 equiv), ^{*t*}BuOH (5.0 equiv), Solvent (0.5 mL), 16 h. ^{*a*} Isolated yield. ^{*b*} Determined by HPLC. ^{*c*} Solvent (0.3 mL), ^{*d*} Reaction run without ^{*t*}BuOH, ^{*e*} Reaction run with (*S*,*S*)-**L1**.

Electron-Neutral Phosphates

Ligand Screening

Reaction conditions: **1a** (0.25 mmol), **2a** (0.30 mmol), MeCN (3.0 mL), (η^3 -C₃H₅)CpPd (2.5 mol%), Ligand (2.5 mol%), 100 °C, 3-6 h. n.d. = not determined.

Miura, M. et al. Angew. Chem. Int. Ed. 2016, 55, 6973.

Optimization Experiments

Entry	Solvent	Temp (°C)	Yield ^a (%)	Ee ^{<i>b</i>} (%)
1	MeCN	80	52	74
2	DMSO	80	31	74
3	MeCN	60	(4)	n.d.
4	DMSO	60	(9)	n.d.
5°	MeCN	60	91	40
6¢	DMSO	60	95	88

Reaction conditions: **1a** (0.25 mmol), **2a** (0.30 mmol), (η^3 -C₃H₅)PdCp (2.5 mol%), Ligand (2.5 mol%), Solvent (3.0 mL), 3-24 h. ^a Isolated yields are shown, yields estimated by GC are in parenthese. ^b Determined by chiral HPLC, n.d. = not determined. ^c (η^3 -C₃H₅)PdCp (5.0 mol%), Ligand (5.0 mol%).

Optimization Experiments

Entry	Solvent	Temp (°C)	Yield ^a (%)	Ee ^b (%)
1	MeCN	80	76	70
2	DMSO	80	98	84
3	MeCN	60	(13)	n.d.
4	DMSO	60	19	n.d.
5°	MeCN	60	89	80
6 ^c	DMSO	60	97	90

Reaction conditions: **1a** (0.25 mmol), **2a** (0.30 mmol), (η^3 -C₃H₅)PdCp (2.5 mol%), Ligand (2.5 mol%), Solvent (3.0 mL), 3-24 h. ^a Isolated yields are shown, yields estimated by GC are in parenthese. ^b Determined by chiral HPLC, n.d. = not determined. ^c (η^3 -C₃H₅)PdCp (5.0 mol%), Ligand (5.0 mol%).

Substrate Scope

Substrate Scope

Substrate Scope

Representative active methylene compounds

Plausible Mechanism

Control Experiments

The racemization proceeds smoothly, and no enantiospecific reaction occurs.
The substrate-dependent partial kinetic resolution occurs in the substitution step.
Stereochemistry is controlled by the catalyst in the final C-C forming event.

Control Experiments

Naphthalene limitation

7aa', 19%

Naphthalene limitation

Naphthalene limitation

Summary

Trost's Work: Achiral primary benzylic carbonates or phosphates

Miura's Work: Racemic secondary benzyl electrophiles

Palladium-catalyzed cross-coupling reactions are one of the most powerful and reliable synthetic tools for the construction of versatile carbon frameworks in modern organic chemistry. Among them, the asymmetric allylic alkylation with allylic electrophiles via π -allylpalladium intermediates (Tsuji-Trost reaction) has been extensively studied and applied to the synthesis of various complex natural products and bioactive molecules. In contrast, the asymmetric benzylic alkylation with benzylic electrophiles via π -benzylpalladium intermediates has been less developed despite its isoelectronic character to the π -allylpalladium. Although related asymmetric palladium catalysis with prochiral nucleophiles and achiral primary benzylic carbonates or phosphates were recently reported by Trost and Czabaniuk, a dynamic kinetic asymmetric transformation (DYKAT) with racemic secondary benzyl electrophiles still remains largely elusive.

In conclusion, we have developed a $Pd/(R)-H_8$ -BINAP catalyzed asymmetric benzylic alkylation of active methylene compounds with racemic diarylmethyl carbonates and pivalates. To the best of our knowledge, this is the first successful example of the dynamic kinetic asymmetric transformation (DYKAT) of secondary benzylic electrophiles via π -benzylpalladium intermediates. The present results provide an enantioconvergent approach to optically active benzylic alkylation products from racemic benzyl alcohol derivatives and prompt further development of related asymmetric catalysis based on the DYKAT process of secondary benzyl electrophiles. Expansion of the scope of nucleophiles and overcoming the "naphthalene limitation" are currently underway in our laboratory.