Literature Report

Asymmetric Nitrone Synthesis *via* Ligand-Enabled Copper-Catalyzed Cope-Type Hydroamination of Cyclopropene with Oxime

Reporter: Hong-Qiang Shen Checker: Cong Liu Date: 2017/10/09

Li, Z.; Zhao, J.; Sun, B.; Zhou, T.; Liu, M.; Liu, S.; Zhang, M.; Zhang, Q. *J. Am. Chem. Soc.* **2017**, *139*, 11702-11705.

Contents

Introduction

Nitrone Synthesis via Inorganic-Base-Mediated Hydroamination

Nitrone Synthesis via Cu-Catalyzed Asymmetric Hydroamination

Summary

CV of Qian Zhang

Position:Full ProfessorNortheast Normal University

Education:

- **1989-1993** B. S., Northeast Normal University
- 1993-1996 M. S., Northeast Normal University
- **2000-2003** Ph. D., Changchun Institute of Applied Chemistry
- **2004** Visiting Scholar, The University of Sydney
- **2004-2010** Associate Professor, Northeast Normal University
- **2010-** Full Professor, Northeast Normal University

Preparation of Nitrones

Retro-Cope Hydroamination of Oximes

Cope Elimination:

Retro-Cope Hydroamination:

From Wikipedia

Retro-Cope Hydroamination of Oximes

Bishop, R. et al. Synthesis 1988, 1988, 997.

Grigg, R. et al. Tetrahedron Lett. 1990, 31, 559.

Retro-Cope Hydroamination of Oximes

Grigg, R. et al. J. Chem. Soc., Chem. Commun. 1993, 372.

Heaney, F. et al. Chem. Commun. 1996, 167.

Based-Mediated Hydroamination of Oximes

Chiba, S.; Hirao, H. et al. Angew. Chem. Int. Ed. 2014, 53, 1959.

Based-Mediated Hydroamination of Oximes

Optimization of the Reaction Parameters

	HO N Base, T, Solvent Ph Me Me Me Me Me Me Me Me $2a$						
Entry ^a	Base	Solvent	T (°C)	t (h)	Yield (%) ^b		
1	none	Toluene	110	24			
2	none	PhCl	130	24	5		
3	none	DMSO	120	24	6		
4	K_3PO_4	Toluene	110	12	98		
5	K_3PO_4	o-Xylene	120	10	98		
6	K ₃ PO ₄	PhCl	120	4	98		
7	K_3PO_4	DMSO	120	24	59		
8	K ₃ PO ₄	DMF	120	24	12		

^a Reaction conditions: **1a** (0.2 mmol), Base (10 mol%), Solvent (2 mL). ^b Isolated yield.

Optimization of the Reaction Parameters

Entry ^a	Base	T (°C)	t (h)	Yield (%) ^b			
1	K ₃ PO ₄	120	4	98			
2	K ₂ CO ₃	120	24	21			
3	KO ^t Bu	120	0.6	96			
4	KO ^t Bu	60	20	97			
5	NaOMe	120	7	67			
6	NaH	120	7	88			
^a Reaction conditions: 1a (0.2 mmol), Base (10 mol%), PhCl (2 mL). ^b Isolated yield.							

Substrate Scope

Substrate Scope

^a 40 mol% K₃PO₄

Copper-Catalyzed Hydroamination of Oximes

Zhang, Q. et al. J. Am. Chem. Soc. 2017, 139, 11702.

Optimization of the Reaction Parameters

^a Reaction conditions: **3a** (0.2 mmol), **4a** (0.24 mmol), CuCl (5 mol%), **L** (6 mol%), NaO^tBu (30 mol%), Solvent (2 mL). ^b Isolated yield. ^c Determined by HPLC. ^d -20 °C. ^e -50 °C.

Ar = Ph (L3) Ar = $3,5-(tBu)_2-4-MeOC_6H_2$ (L4)

Scope of Cyclopropenes

Scope of Ketoximes

Scope of Aldoximes

Ar = $4 - MeC_6H_4$, **8a**, 99%, 92% ee $4 - MeOC_6H_4$, **8b**, 94%, 92% ee $4 - {}^tBuC_6H_4$, **8c**, 96%, 95% ee $4 - CIC_6H_4$, **8d**, 89%, 91% ee $4 - PhC_6H_4$, **8e**, 99%, 92% ee Ar = $4-O_2NC_6H_4$, **8f**, 90%, 83% ee $3-MeC_6H_4$, **8g**, 99%, 99% ee $3-MeOC_6H_4$, **8h**, 93%, 92% ee $3-BrC_6H_4$, **8i**, 95%, 80% ee $3-CF_3OC_6H_4$, **8j**, 93%, 91% ee

Control Expriments

Plausible Mechanism

Summary

Chiba, S.; Hirao, H. et al. Angew. Chem. Int. Ed. 2014, 53, 1959.

Zhang, Q. et al. J. Am. Chem. Soc. 2017, 139, 11702.

As a highly versatile linchpin in synthetic chemistry, nitrone has found widespread applications in 1,3-dipolar cycloaddition for heterocycle and natural product synthesis. Its multifaceted applications as spin trapping agents, bioorthogonal probes and efficacious therapeutic agents also render nitrone a heavily pursued synthetic target. Chiral nitrones also serve as important building blocks in asymmetric synthesis.

The First Paragraph

In stark contrast to their versatile reactivity and prominent roles, routinely employed methods to synthesize nitrones still rely heavily on traditional strategies. Although alternative strategies are emerging at an increasing rate in the past decade, none holds the prospect of enantiocontrol.

We have presented the first example of an intermolecular Copetype hydroamination process of oximes using catalytic earthabundant copper salts with the promotion of chiral ligands, allowing for a practical, straightforward access to valuable chiral nitrones in high enantio- and diastereoselectivities from readily available starting materials. The Cu-catalyzed process demonstrated broad scope and remarkable ligand directed stererocontrol, representing the first example of highly enantioselective nitrone formation process. Further developments of the conceptually novel reactivity mode are expected to significantly expedite chiral nitrone synthesis.