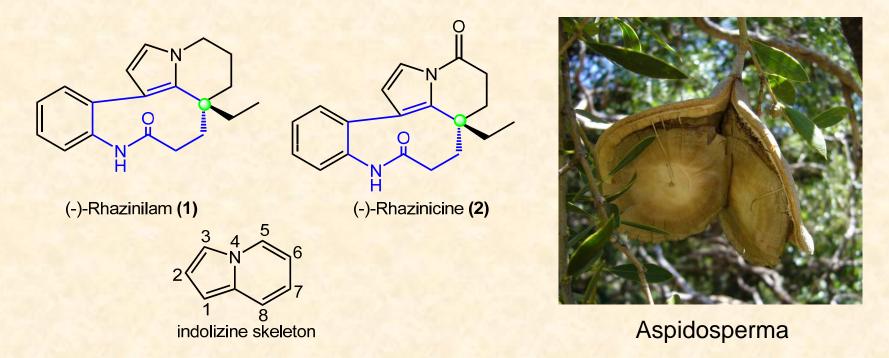
Protecting-Group-Free Total Synthesis of (-)-Rhazinilam and (-)-Rhazinicine using a Gold-Catalyzed Cascade Cyclization

Reporter: Jing Luo

Checker: Xian-Feng Cai

Date: 07/23/2013

Tokuyama. H. et al. Angew. Chem. Int. Ed. 2013, 52, 7168.



Tohoku University

Contents

- ◆ Introduction
- Gold-Catalyzed Cascade Cyclization
- ◆ Synthesis of (-)-Rhazinilam and (-)-Rhazinicine
- Summary

Introduction

Characters:

- a nine-membered lactam ring fused to its 5,6,7,8-tetrahydroindolizine skeleton and a quaternary carbon center.
- new antitumor agents.

Retrosynthetic analysis

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

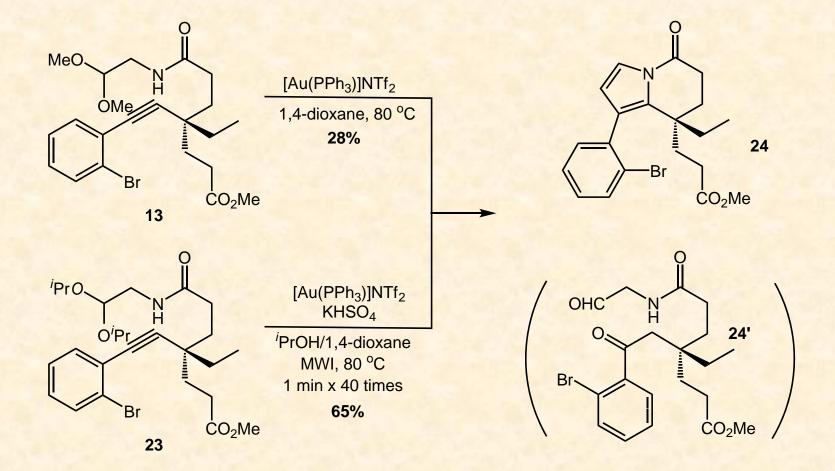
Formation of 5-indoliznone

$$\begin{array}{c} \text{MeO} \\ \text{OMe} \\ \text{R} \\ \text{8} \end{array} \qquad \begin{array}{c} \text{[M]} \\ \text{OMe} \\ \text{R} \\ \text{[M]} \end{array} \qquad \begin{array}{c} \text{H}^+ \\ \text{MeO} \\ \text{R} \\ \text{[M]} \end{array}$$

Gold-Catalyzed Cascade Cyclization

Entry	Catalyst ^[a]	Solvent	t [h]	Yield [%]
1	AuCl	CICH ₂ CH ₂ CI	24	-
2	AuCl ₂	CICH ₂ CH ₂ CI	24	manusuka du ukandukaka du uka uka uka uka uka uka uka uka uka uk
3	[Au(PPh ₃)Cl]	CICH ₂ CH ₂ CI	24	-
4	AuCl, AgOTf	CICH ₂ CH ₂ CI	8	-
5	[Au(PPh ₃)Cl], AgOTf	CICH ₂ CH ₂ CI	7	20
6	[Au(PPh ₃)Cl], AgNTf ₂	CICH ₂ CH ₂ CI	2.5	20
7	[Au(PPh ₃)]NTf ₂	CICH ₂ CH ₂ CI	11	50
8	[Au(PPh ₃)]NTf ₂	1,4-dioxane ^[b]	11	69
9	[(Cy-JohnPhos)Au]NTf ₂	1,4-dioxane ^[b]	11	64

[a] Cul or PdCl₂ did not give **12a**. [b] Concentration of **11a** was 0.1 M.


Substrate scope

Construction of multisubstituted indolizinones

Ar = 4-nitrophenyl

Synthesis of (-)-Rhazinilam and (-)-Rhazinicine

Synthesis of (-)-Rhazinilam and (-)-Rhazinicine

Summary

1. Develop a gold-catalyzed cascade double cyclizations

2. Using this method to complete the total synthesis of (-)-Rhazinilam and (-)-Rhazinicine

The first total synthesis

(-)-Rhazinilam (1), isolated from various Apocynaceae species, originally from Rhazya stricta Decaisne, is a member of the Aspidosperma class of alkaloids. This compound interferes with tubulin polymerization and dynamics. Because of its significant biological effects, (-)-rhazinilam (1) and its congeners such as (-)-rhazinicine have been recognized as lead compounds for new antitumor agents. In addition to its interesting biological activity, its unique structure, with a nine-membered lactam ring fused to its 5,6,7,8-tetrahydroindolizine skeleton and a quaternary carbon center, has received considerable attention as a synthetic target and provided an attractive platform for demonstrating the utility of novel synthetic methodologies and tactics. We describe herein a total synthesis of (-)-rhazinilam (1) and the first total synthesis of (-)-rhazinicine (2) using a facile construction of the highly substituted indolizinone by a newly developed gold-catalyzed cascade cyclization reaction.

In summary, we have achieved a total synthesis (-)-rhazinilam (1) and the first asymmetric total synthesis of (-)-rhazinicine (2) by using the efficient construction of the per-substituted indolizinone core though a gold-catalyzed cascade reaction of linear substrates. The mild reaction conditions for the construction of the indolizinone core and the nine-membered lactam ring allowed us to achieve these protecting-group-free total syntheses. We have also demonstrated the scope and generality of this cascade reaction for synthesis of highly substituted indolizinones. Further applications of this gold-catalyzed cascade reaction for the construction of other heterocyclic skeletons are currently under investigation, and will be reported in due course.