Literature Report

N-Heterocyclic Carbene Catalyzed [4+3] Annulation of Enals and o-Quinone Methides: Highly Enantioselective Synthesis of Benzo-ε-Lactones

> Reporter: Mu-Wang Chen Checker: Zhang-Pei Chen Date: 2013-09-03

Ye, S. et al. Angew. Chem. Int. Ed. 2013, 52, 8607-8610.

Institute of Chemistry

Contents

NHC-Catalyzed [3+4] Annulation of Enals

Optimization Studies

Entry	Cat.	Base	Solvent	Yield [%] ^a	d.r. ^{<i>b</i>}	Ee (%) ^c
7	B3	DBU	DCM	88	3:1	92 (43)
8	B3	DBU	Et ₂ O	61	5:1	94 (20)
9	B3	DBU	DME	96	3:1	92 (17)
10	B3	DBU	1,4-dioxane	97 (96) ^d	4:1	94 (29)
11	B3	DBU	CH ₃ CN	55	3:1	92 (19)
12 ^e	B3	DBU	1,4-dioxane	98	3:1	93 (40)
13 ^e	B3	DBU	1,4-dioxane	99	3:1	93 (33)
14 ^e	B 3	DBU	1,4-dioxane	88	3:1	95 (33)
15	B3	Cs_2CO_3	1,4-dioxane	38	3:1	94 (25)
16	B3	Et ₃ N	1,4-dioxane	99	3:1	93 (33)
17	B 3	KOAc	1,4-dioxane	98 (96) ^d	4:1	94 (40)
18 ^f	B 3	KOAc	1,4-dioxane	(84) ^d	4:1	92 (n.d.)

^a Combined yield of the two diastereomers as determined by ¹H NMR spectroscopy. ^b Diastereoselectivity ¹H NMR analysis of unpurified reaction mixture. ^cEnantiomeric excess of *cis*-**3a** and *trans*-**3a** detemined by HPLC on a chiral column. ^d Combined yield of isolated diastereomers. ^e 10 mol% of Mg(OTf)₂, LiClO₄ or Cu(OTf)₂ was used as the additive for the reaction in entries 12-14. ^fThe reaction was carried out at 0 °C

Substrate Scope of Enals and *o*-Quinone Methides

Substrate Scope of Enals and *o*-Quinone Methides

Proposed Catalytic Cycle

A Dual Lewis Base Activation Strategy for Enantioselective Carbene-Catalyzed Annulations

Scheidt, K. A. et al. J. Am. Chem. Soc. 2013, 135, 10634-10637.

NHC/Fluoride-Promoted Reaction of 1a and 2a

Ph	+ x	$\frac{\text{OSiZ}_3}{20 \text{ mol}}$	% azolium salt, Cs own-6, base, THF		+	
1a		2a		Ph	3a I Ph	4a
Entry	Azolium	Base	X/SiZ ₃	Ratio (3a:4a)	Yield [%]	Ee (%) ^b
1	Α	Cs_2CO_3	Br/TBS	4:1	32	/
2	Α	CsOAc	Br/TBS	4.5:1	37	1
3	В	CsOAc	Br/TBS	4:1	57	/
4	С	CsOAc	Br/TBS	4.5:1	47	82
5	С	CsOAc	CI/TBS	4.5:1	45	74
6	С	CsOAc	Br/TIPS	4.5:1	42	78
7	С	CsOAc	Br/TES	/	/	/
8	С	<i>n</i> -Bu₄N∙OAc	Br/TBS	4.5:1	62	84
9 c	С	<i>n</i> -Bu₄N∙OAc	Br/TBS	5.5:1	64	92

^a Conditions: **1a** (1 equiv), **2a** (2 equiv), CsF (2 equiv), 18-crown-6 (2 equiv), base (30 mol %), THF (0.15 M in **1a**), 23 °C, 3 h, unless otherwise noted. Mes = $2,4,6-Me_3C_6H_2$. ^b Determined by chiral stationary-phase HPLC. ^c The reaction was run at -18 °C for 12 h.

Scope of Dual-Activation Formal [4 + 3] Annulation

3m 83%, 83% ee, (2:1 d.r.)

Ph F

3n 85%, 76% ee, (1.2:1 d.r.)

3o 79%, 74% ee, (1:1 d.r.)

Formal [4 + 2] Reaction with Acrolein

Reaction Pathway

Highly Stereoselective Formal [3+3] Cycloaddition of Enals and Azomethine Imines Catalyzed by *N*-Heterocyclic Carbenes

Scheidt, K. A. et al. J. Am. Chem. Soc. 2007, 129, 5334-5335.

Highly Diastereo- and Enantioselective Additions of Homoenolates to Nitrones Catalyzed by *N*-Heterocyclic Carbenes

Scheidt, K. A. et al. J. Am. Chem. Soc. 2008, 130, 2416-2417.

N-Heterocyclic Carbene Catalyzed [3+2] Annulation of Enals and Aldehydes

Bode, J. W. *et al. J. Am. Chem. Soc.* **2004**, *126*, 14370-14371; Glorius, F. *et al. Angew.Chem. Int. Ed.* **2004**, *43*, 6205-6208.

N-Heterocyclic Carbene Catalyzed [3+2] Annulation of Enals and Ketones

*N***-Heterocyclic Carbene Catalyzed [3+2] Annulation of Enals and Imines**

Summary

ε-Lactones are privileged motifs occurring in a wide variety of biologically active natural and unnatural products. Therefore, the synthesis of ε-lactones has received considerable attention. The most applied approach to εlactones is the Bayer–Villiger oxidation of cyclohexanone. In addition, several other interesting methodologies, including metal-catalyzed ring expansion of 3-(2-hydroxyphenyl) cyclobutanones, metal-catalyzed carbonylation of 2-allylphenols, and *N*-heterocyclic carbene catalyzed ring expansion of aldehydes have been reported. However, most of these approaches are intramolecular reactions. The intermolecular reaction for the synthesis of ε-lactones has rarely been reported. More importantly, the catalytic enantioselective synthesis of ε-lactones has far less established. In summary, an unprecedented NHC-catalyzed [4+3] annulation of enals with o-quinone methides has been established. The reaction worked well for both β -aryl and β -alkyl enals, thus giving the corresponding benzo- ϵ -lactones in high yields with moderate (for β -aryl enals) to excellent (for β -alkyl enals) diastereoselectivities. High to excellent enantioselectivities (81–98% ee) were achieved by using a chiral triazolium NHC with a free hydroxy group. Further investigation on the reaction scope and related other NHC-catalyzed annulation reactions are underway in our laboratory.