Literature Report (7)

Cu^I-catalyzed enantioselective protoboration for the construction of α -chiral C-B bond

Reporter: Yue Ji Checker: Guang-Shou Feng Date: 2015/09/28

Ito, H. et al. *Angew. Chem. Int. Ed.* **2015**, *54*, 8809.

Ito Hajime Hokkaido University

- Introduction
- Cu^I-catalyzed enantioselective protoboration of alkenes
- > Cu^I-catalyzed enantioselective protoboration of indoles
- > Summary

Direct stereospecific transformation of stereogenic C-B bonds

Direct stereospecific transformation of stereogenic C-B bonds to C-C bonds

Crudden, C. M. et al. *J. Am. Chem. Soc.* **2009**, *131*, 5024; Suginome, M. et al. *J. Am. Chem. Soc.* **2010**, *132*, 13191.

Introduction

Direct stereospecific transformation of stereogenic C-B bonds to C-O bonds

Direct stereospecific transformation of stereogenic C-B bonds to C-N bonds

Tortosa, M. et al. *J. Am. Chem. Soc.* **2014**, *136*, 15833. Ito, H. et al. *Adv. Synth. Catal.* **2013**, 355, 3527

Hoveyda, A. H. et al. J. Am. Chem. Soc. 2009, 131, 3160.

Ito, H. et al. J. Am. Chem. Soc. 2010, 132, 1226.

Lin, G.-Q. et al. Org. Lett. 2014, 16, 1426.

Hall, D. G. et al. Nat. Chem. 2011, 3, 894.

Tortosa, M. et al. J. Am. Chem. Soc. 2014, 136, 15833.

annular vicinal borosilane synthesis

enantioenriched linear vicinal borosilane synthesis

Ito, H. et al. Adv. Synth. Catal. 2013, 355, 3527.

Ito, H. et al. Angew. Chem. Int. Ed. 2008, 47, 7424; J. Am. Chem. Soc. 2010, 132, 5990.

Transition state models explaining the higher enantioselectivity for (Z)-configuration

Ito, H. et al. Adv. Synth. Catal. 2013, 355, 3527.

Yun, J. et al. Org. Lett. 2015, 17, 764.

Yun, J. et al. Org. Lett. 2015, 17, 764.

Ito, H. et al. Angew. Chem. Int. Ed. 2015, 54, 8809.

	Cu(O ^t Bu), (<i>R</i> , <i>R</i>)-L ⁴ (pin)B-B(pin) 2 ^t BuOH, Na(O ^t Bu), Th Cbz 1a	$HF \qquad \qquad$	oin) OMe	
entry	conditions	yield (%)	d.r.	ee (%)
1	standard conditions	98	97:3	93
2	no Cu(O ^t Bu)	<5		
3	no (<i>R</i> , <i>R</i>)- L1	<5		
4	no Na(O ^t Bu)	74	89:11	93
5	no [#] BuOH	33	76:24	74
6	L2 instead of L1	98	89:11	74
7	L3 instead of L1	93	90:10	27
8	L4 instead of L1	77	91:9	61
9	L5 instead of L1	71	97:3	37
10	L6 instead of L1	<5		
11	MeOH instead of ^t BuOH	94	75:25	94

Strereospecific oxidation of chiral 3-borylindoline

Ito, H. et al. Angew. Chem. Int. Ed. 2015, 54, 8809.

Cul-catalyzed enantioselective protoboration of indoles

Aromatic compounds are ubiquitous in nature and readily available as synthetic materials. Enantioselective dearomatization reactions of heteroaromatic compounds are very powerful transformations because they provide direct access to a wide variety of chiral saturated heterocycles, which are important components of pharmaceutical drugs and bioactive molecules. The development of new methods for the formation of consecutive stereogenic centers through the stereoselective dearomatization of multisubstituted aromatic compounds would also have important practical implications for the synthesis of natural products. In summary, we have developed the enantioselective C-B bondforming dearomatization of heteroaromatic compounds using a chiral bisphosphine-copper (I) complex as catalyst and a diboron reagent. This reaction involved the enantioselective dearomative addition of borylcopper (I) to methyl indole-2-carboxylate with concomitant formation of a stereogenic C-B bond, followed by the diastereoselective protonation of the copper (I) enolate intermediate to deliver the enantioenriched chiral indoline bearing consecutive stereogenic centers with excellent regio-, diastereo-, and enantioselectivities. We envisage that the results of this study will provide further opportunities for the development of novel stereoselective dearomative borylation reactions involving a wide variety of aromatic compounds, such as pyrroles, furans, and polyaromatic hydrocarbons. Advances in this area would therefore allow the efficient synthesis of complex saturated heterocyclic compounds with potentially interesting biological activities.