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ABSTRACT: The first palladium-catalyzed asymmetric
Heck reaction between aryl triflates and alkynes to give
trisubstituted allenes with high er under mild reaction
conditions is described. The key to the success is the
discovery and fine-tuning of the different N-substituents
of Xu-Phos, which ensure the enantioselectivity and
reactivity. Synthetic transformation of the chiral allenes
with high chirality transfer was also demonstrated.

Allene moieties with axial chirality are present in a variety
of natural products with biological activities and

pharmaceuticals.1 In addition, as useful synthetic intermedi-
ates, the unique reactivity combined with the electronic and
steric effects of substituents of allenes allow a wide range of
synthetic applications through cycloaddition, nucleophilic
addition, oxidation, cross-coupling, cycloisomerization, and
so on.2 Axial chirality could be transferred to central chirality
to provide an irreplaceable entry to chiral molecules.3 In view
of the significance of chiral allenes in organic synthesis, the
development of efficient methods in the formation of chiral
allenes from readily available chemicals has received much
attention.4 Several strategies for synthesis of chiral trisub-
stituted allenes including kinetic resolution,5 chirality transfer,6

desymmetrization,7 asymmetric diazo-coupling reaction,8

isomerization,9 asymmetric Wittig reaction,10 conjugated
enynes,11 enantioseletcive carboxylation of propargyl deriva-
tives,12 asymmetric cycloaddition reaction,13 and asymmetric
transformations of cyclopropenone derivatives14 have been
developed.
On the other hand, the Heck reaction of olefins is the most

synthetically versatile method to construct a C−C bond in
organic synthesis.15 However, the Heck reaction of alkynes to
form allene lags behind due to the energetically unfavored β-
hydride elimination of vinyl palladium species.16 In 1989, a
trisubstutited allene was observed by Heck and co-workers for
the first time as a side product with 4% yield from the reaction
of 3-hexyne and methyl 2-iodobenzoate17 (Scheme 1a). Based
on this observation, Miura and co-workers achieved a more
selective reaction with ortho-substituted aromatic bromides
under related conditions, which might be ascribed to the
increased steric repulsion between the ortho-substituted aryl
group and the PdLn of the vinyl palladium species favors the
energetically unfavored β-hydride elimination.18 Hamblett has
successfully developed an intramolecular Heck cyclization of

an aryl chloride with an alkyne to selectively synthesize allenes
or conjugated dienes via ligand switching.19 In 2014, Larini,
Jazzar and co-workers reported an intermolecular reaction
between aryl bromides and alkynes to access allenes which
proceeds via a base-assisted deprotonation rather than a Heck-
type Pd-mediated β-hydride elimination and the key to
successful is the use of a novel ligand (DFOTP).20 In 2018,
with the use of a new hybrid Pd(0)-catalyst incorporating a
water-soluble dba ligand, Frantz and co-workers demonstrated
an elegant Pd(0)-catalyzed Heck reaction between aryl triflates
and alkynes to furnish trisubstituted allenes in 34−98% yield
under mild conditions.21 In 2019, Cheng reported the first
regioselective carbopalladation of ortho-substituted aryl iodide
with 1-aryl-1-alkynes that generates alkenyl palladium species
with the Pd-center adjacent to the noncoordinative alkyl
moiety, in which the ortho-substituent favors the β-hydride
elimination.22 In contrast, by the use of dArFpe as ligand,
Morandi found that an alternative carboiodination reaction of
alkynes rather than Heck reaction would take place to
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Scheme 1. Palladium-Catalyzed Heck Reaction toward
Trisubstuted Allenes
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stereoselectively access functionalized tetrasubstituted alkenyl
iodides.23 So far, no example of a Pd-catalyzed enantioselective
Heck-type reaction of aryl triflates and alkynes has been yet
explored due to the lack of suitable chiral ligands to accelerate
the unfavored β-hydride elimination as well as controlling the
enantioselectivity.
Recently, Zhang group developed a series of new type of

chiral phosphine ligands bearing a flexible sulfinamide moiety,
so-called Sadphos(Sulfinamidephosphine),24 which showed
the good performance in asymmetric palladium-catalyzed
cross-coupling reactions, reductive Heck reaction and related
cascade reactions.25 To further advance the applications of
these new chiral ligands especially in difficult reactions, we
became interested in whether these chiral ligands could be
applied to the challenging asymmetric Heck reaction of aryl
halides or triflates with alkynes. However, considerable
challenges are associated with this hypothesis (Scheme 1).
(1) How to control the product distribution (Heck reaction
product vs carboiodination product. (2) The β-hydride
elimination of vinyl palladium species to generate allenes is
considered to be an energetically unfavored process;16 thus,
the exploration of a suitable chiral ligand to achieve good yields
and high enantioselectivity would be very challenging. (3)
Allene product might undergo subsequently isomerization to
form the 1,3-diene product.26 (4) Further Heck reaction of
allene product with organic halides or triflates may take
place.27 Combined with the reported literature, we believed
that ligand was the key to address these issues. Herein, we
report the first example of palladium-catalyzed asymmetric
Heck reaction between aryl triflates and alkynes to give
enantioenriched trisubstituted allenes in good yield with good
enantioselectivity.
The asymmetric Heck reaction of aryl triflate 1a with alkyne

2a was selected as a model reaction for screening reaction
conditions (Table 1 and Figure 1). Many commercially
available chiral ligands such as L1 to L6 are investigated but
unfortunately failed to promote the reactions (see more ligands
and details in Supporting Information). Inspired by the easy
synthesis and modification of Sadphos and their good
performance in asymmetric palladium catalysis, we next turned
to screen a series of Sadphos. Ming-Phos, Xiang-Phos, Wei-
Phos, and Xu-Phos with a free NH moiety could not give the
product either. Inspired by Frantz’s work, we envisaged that
increasing the steric hindrance of the ligand may also promote
the β-hydride elimination of vinyl palladium species. Indeed,
the introduction of Me group at the sulfinamide moiety to the
Xu-Phos, structured as Xu2 and Xu3, could catalyze this
reaction in 30−38% yields with moderate enantioselectivity
(Figure 1). Thus, some new Xu-Phos Xu4-Xu8 with different
N-substituents were then prepared, and a simple summary of
our optimization study with a selected set of these ligands is
provided in Table 1. During this screening, we found that the
protecting group on nitrogen in the molecular skeleton of Xu-
Phos has a great influence on the enantioselectivity and
reactivity, and the bigger one gave a better reactivity (Table 1,
entries 1−3). We found that 70% yield of 3aa with 92.5:7.5 er
could be obtained under the optimal conditions with
Pd2(dba)3 as the precatalyst, Xu6 as the chiral ligand, and
Na3PO4 as the base in THF/H2O (v/v = 4/1) at 65 °C (Table
1, entry 3). When [Pd(allyl)Cl]2 was used as a catalyst, 92%
yield of 3aa was delivered but with a relatively lower
enantioselectivity (Table 1, entry 5). Pd1 could be used as a
precatalyst to give 3aa with 73% yield and 94:6 er (Table 1,

entry 10). Other palladium salts delivered lower ers and yields
(Table 1, entries 7−9) and palladium(II) precursors seem
better than palladium(0). Similar results were obtained with
Xu8 (Table 1, entry 11). The same result was obtained when
we reduced the amount of catalyst loading to 4 mol % (Table

Table 1. Screening the Reaction Conditionsa

entry Pd source Xuphos yieldb (%) erc (%)

1 Pd2(dba)3 Xu4 35 85:15
2 Pd2(dba)3 Xu5 44 90.5:9.5
3 Pd2(dba)3 Xu6 70 92.5:7.5
4 Pd2(dba)3 Xu7 46 91.5:8.5
5 [Pd(allyl)Cl]2 Xu6 92 88.5:11.5
6 Pd(OAc)2 Xu6 <5 nr
7 Pd2(dba)3CHCl3 Xu6 42 90:10
8 Pd(TFA)2 Xu6 nrg

9 Pd(NBD)Cl2 Xu6 nr
10 Pd1f Xu6 75 94:6
11 Pd1 Xu8 77 94:6
12d Pd1 Xu8 76 94:6
13d,e Pd1 Xu8 76 94:6
14d,e Pd1 Xu8′ 66 5.5:94.5

aReaction conditions: 1a (0.05 mmol), 2a (0.15 mmol), Pd (5 mol
%), Xuphos (15 mol %), Na3PO4 (0.105 mmol), THF (0.8 mL),
deionized H2O (0.2 mL), 65 °C, 24 h. bYield with CH2Br2 as an
internal standard was determined by 1H NMR. cDetermined by chiral
high-performance liquid chromatography. dPd1 (4 mol %), Xu6 (12
mol %). e2a (2 equiv). fPd1 = di-μ-chlorobis[2-[(dimethylamino)-
methyl]phenyl-C,N]dipalladium(II). gnr = no reaction.

Figure 1. Selected examples of screened chiral ligands.
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1, entry 12). When reducing the amount of 2a to 2 equiv,
which could also give 3aa in 74% yield and 94:6 er (Table 1,
entry 13). We used the corresponding enantiomer Xu8′ as a
chiral ligand to give 3aa with 5.5:94.5 er; that is the enantiomer
of 3aa is the major product (Table 1, entry 14). More
screening parameters are summarized in the Supporting
Information.
With optimal reaction conditions in hand, various aryl

triflates and alkynes were then examined (Scheme 2). Aryl

triflates with electron-withdrawing and electron-donating
groups delivered the corresponding products with good
enantioselectivity under the standard conditions, but lower
reactivity was observed with those electron-deficient aryl
triflates (Scheme 2, 3da, 3ob, 3pb, 3rb). Specifically, meta- and
para-substituted aromatic triflates reacted similarly, but for
ortho-substituted aromatic triflates, longer reaction time was
required and delivered relatively lower enantioselectivity (3ba,
3da, 3fa) and Xu6 showed better performance than Xu8 (3ba,

3fa, 3ae). The substrates containing functional groups such as
ester (3tb), aldehyde (3rb), ketone (3qb), and protected
amino group (3sb) were all tolerated under the reaction
conditions, providing an opportunity for further elaborations.
Lower enantioselectivity was obtained for alkynes with an ether
functionality, probably because the oxygen atom coordinated
with the metal center during the elimination process (3ag). On
the other hand, nonsymmetrical alkynes afforded two products
(3al, 3al′) via different regioselective Heck reactions, but only
one single product (3ai, 3aj) was isolated in low yield via anti-
regioselective Heck reactiondue to the unstable allenyl ether.
Finally, absolute configuration of the products was established
to be S by comparing the specific optical rotation of allene 3ca
with the literature data.6e,l

Unfortunately, we explored the reaction of 1-aryl-1-
alkylalkyne, but no desired allene product was delivered (eq
1). We also explored the reaction of cyclic alkyne 2n; however,

cyclic conjugated diene 4 instead of allene was obtained,
indicating that the cyclic allene product could indeed undergo
further isomerization under the reaction conditions (eq 2). In
addition, we also explored the use of aryl bromides and aryl
iodides in the reaction, the reaction of aryl bromide 1u with 2b
could give the desired allene product in 35% yield with
93.5:6.5 er (eq 3). To gain insight of the possible mechanism,
the reaction of 1a (0.05 mmol) and 2a in the absence of
Na3PO4 with the use of a stoichiometric amount of catalyst
was carried out, and 3aa was obtained in 31% NMR yield after
2 h, which might rule out the possibility of that base-assisted
asymmetric deprotonation pathway (eq 4).
In addition, a gram-scale reaction of 1a and 2b delivered

1.14 g of 4a in 84% yield with 96:4 er (Scheme 3, a). Chiral
trisubstituted allene 3aj with a silyl ether group could be
deprotected and then cyclized to give chiral 2,5-dihydrofuran 5
with 93:7 er under the catalysis of a gold catalyst28 (Scheme 3,
b). A Rh(III)-catalyzed ortho allylation of N-methoxybenza-
mide 6 with chiral trisubstituted allene 3ab could deliver the
desired product 7 with 95.5:4.5 er29 (Scheme 3, c).
In light of the structure of the chiral ligand Xu8 and binding

mode of Sadphos with palladium and the absolute config-
uration of product S-3aa, a chirality induction model was
proposed for the reaction (Figure 2).
In conclusion, we have developed a palladium-catalyzed

asymmetric Heck reaction between aryl triflates and alkynes
with the use of Xu-Phos bearing a fine-tuned relatively bulky
N-substituent, which enables the energetically unfavored β-

Scheme 2. Investigating the Reaction Scope
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hydride elimination of vinyl palladium species. The reaction
provides chiral trisubstituted allenes with various functional
groups in moderate to high yields with up to 96.5:3.5 er under
mild conditions. The axial chirality could be transferred to
central chirality to provide an irreplaceable entry to chiral
molecules.
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