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Allenoates:

Asymmetric synthesis methods:

Enantioenriched substrates

Stoichiometric amounts of chiral promoters/auxiliaries

Catalytic asymmetric synthesis (a few)



轴手性分子：



Enantioselective Synthesis of Chiral Allenoates by Guanidine-
Catalyzed Isomerization of 3-AlkynoatesCatalyzed Isomerization of 3 Alkynoates

Choon-Hong Tan(陈俊峰) et al. J. Am. Chem. Soc. 2009,131, 7212



Derivatization of the allenoates:

Choon-Hong Tan(陈俊峰) et al. J. Am. Chem. Soc. 2009,131, 7212



Kinetic Resolution of Racemic 2,3-Allenoates by Organocatalytic 
Asymmetric 1 3-Dipolar CycloadditionAsymmetric 1,3 Dipolar Cycloaddition
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Bifunctional Hydrogen-Bond Donors That Bear a Quinazoline 
B thi di i Sk l t f A t i O t l ior Benzothiadiazine Skeleton for Asymmetric Organocatalysis

Yoshiji Takemoto et al. Chem. Eur. J. 2011, 17, 10470



Organocatalyzed Isomerization of α-Substituted Alkynoates into 
Trisubstituted Allenoates by Dynamic Kinetic Resolution

C fConcept of this work:

Yoshiji Takemoto et al. ChemCatChem 2012, 4, 983



The Substrate Scope:
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Plausible reaction mechanism:
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Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted 
allenesallenes
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Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted 
allenesallenes

Keiji Maruoka et al. Nature Chem. 2013, 5, 240



Pd-Catalyzed Asymmetric β-Hydride Elimination en Route to Chiral 
AllenesAllenes
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Pd-Catalyzed Asymmetric β-Hydride Elimination en Route to Chiral 
AllenesAllenes

Doug E. Frantz et al. J. Am. Chem. Soc. 2013, 135, 4970



A Room-Temperature Catalytic Asymmetric Synthesis of Allenes 
ith ECNU Phoswith ECNU-Phos

Shengming Ma et al. J. Am. Chem. Soc. 2013, 135, 11517



Design of a Catalytic Approach to Synthesize Chiral 2,3-Allenoates:

Shengming Ma et al. J. Am. Chem. Soc. 2013, 135, 11517



Shengming Ma et al. J. Am. Chem. Soc. 2013, 135, 11517



Prediction of the Absolute Configuration of the Product:

Shengming Ma et al. J. Am. Chem. Soc. 2013, 135, 11517



Organocatalytic Enantioselective Synthesis of 2,3-Allenoates 
by Intermolecular Addition of Nitroalkanes to Activated Enynesy y
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Control experiments:
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Plausible transition states:
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The Substrate Scope:

Junliang Zhang and Jianwei Sun et al. J. Am. Chem. Soc. 2013, 135, 18020



Derivatization of the allenoate:

Junliang Zhang and Jianwei Sun et al. J. Am. Chem. Soc. 2013, 135, 18020



Summary:
Isomerization by a chiral base:

Tan’s work

Takemoto’s work



Summary:

Kinetic resolution of racemic allenoates:

Gong’s workGong s work

Maruoka’s work
Phase-transfer catalyzed deprotonation:



Summary:

Asymmetric β-hydride elimination of enoltriflates:

Frantz’s workFrantz s work

Ma’s work
Asymmetric carbonylation of propargylic carbonates:



Asymmetric synthesis is fundamentally important in organic chemistry in viewAsymmetric synthesis is fundamentally important in organic chemistry in view

of the wide applications of enantioenriched materials. Over the past few

decades, there has been significant progress in establishing central chirality, g p g g y

and two-point axial chirality (e.g., BINAP). In sharp contrast, efficient generation

of three-point axial chirality, such as that in allenes, has met with very limited

success and still remains challenging today. On the other hand,

enantioenriched allenes are tremendously important not only because of their

wide occurrence in natural products and biologically active compounds as well

as functional materials but also due to their versatility in organic synthesis as

chiral building blocks and even chiral ligands/catalysts.



In summary, we have developed the first intermolecular asymmetric
synthesis of 2 3-allenoates by bifunctional catalysis It is a new addition tosynthesis of 2,3 allenoates by bifunctional catalysis. It is a new addition to
the small family of catalytic asymmetric syntheses of allenoates without
using stoichiometric amounts of chiral reagents or starting materials.
Enabled by the new bifunctional catalyst, the reactions between various
nitroalkanes and activated enynes proceed efficiently under mild conditions
with good functional group compatibility and these trisubstituted allenoateswith good functional group compatibility, and these trisubstituted allenoates
were mostly obtained in excellent optical as well as chemical purity. The
cinchona-based thiourea catalyst is crucial to the success because it noty
only provides a highly ordered transition state to promote the first C−C bond
formation but also serves as an excellent proton shuttle in the second
enantioselectivity determining step. Moreover, it can also function as an
excellent isomerization catalyst for the conversion from racemic alkynoates
to highly enantioenriched allenoates These trisubstituted allenoates with ato highly enantioenriched allenoates. These trisubstituted allenoates with a
2-nitroethyl α-substituent have been synthesized for the first time, and they
are versatile synthetic intermediates toward other useful building blocks.




