## **Literature Report 3**

# Palladium-Catalyzed Asymmetric Allylic Alkylation of 3-Substituted 1*H*-Indoles with Vinylcyclopropanes

Reporter: Zi-Biao Zhao Checker: Xiao-Yong Zhai Date: 2018-6-25

Trost, B. M.\*; Bai, W.-J.; Hohn, C.; Bai, Y.; Cregg, J. J. *J. Am. Chem. Soc.* **2018**, *140*, 6710-6717.

## CV of Prof. Trost, B. M.



#### **Background:**

- 1962 B.S., University of Pennsylvania
- >1962-1965 Ph.D., Massachusetts Institute of Technology
- > 1965-1968 Assistant Professor, University of Wisconsin
- > 1968-1969 Associate Professor, University of Wisconsin
- > 1969-1987 Professor, University of Wisconsin
- > 1987-Now Professor, Stanford University

#### Research:

- Designing new reactions and reagent involves the development of transition metal based catalysts.
- > Developing new synthetic strategies towards complex natural products.











#### **"Three-carbon-atom" Precursors for Cycloadditions**





Larksarp, C.; Alper, H. J. Org. Chem. 1998, 63, 6229.

#### "Three-carbon-atom" Precursors for Cycloadditions



Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836.

#### "Three-carbon-atom" Precursors for Cycloadditions





Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.

## Vinylcyclopentane Cycloaddition



Parsons, A. T.; Campbell, M. J.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122.



Parsons, A. T.; Smith, A. G.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688.

### **Pd-Catalyzed Vinylcyclopentane Cycloaddition**



Trost, B. M.; Morris, P. J. Angew. Chem. Int. Ed. 2011, 50, 6167.

### **Trost Asymmetric Allylic Alkylation Ligands**



(R,R)-L3: stilbene

(S,S)-L4: anthracene

## **Optimization of The Reaction Conditions**



| Entry | Ligand | Solvent          | Yield(%) <sup>a</sup> | D.r. <sup>b</sup> | Ee(%) <sup>c</sup> |
|-------|--------|------------------|-----------------------|-------------------|--------------------|
| 1     | L1     | toluene          | 64                    | 19:1              | 96                 |
| 2     | L2     | toluene          | 61                    | 19:1              | 92                 |
| 3     | L3     | toluene          | 66                    | 15:1              | -87                |
| 4     | L4     | toluene          | 21                    | 4:1               | 23                 |
| 5     | L1     | trifluorotoluene | 69                    | 4:1               | 83                 |
| 6     | L1     | THF              | 14                    | 15:1              | 89                 |
| 7     | L1     | $CH_2CI_2$       | 77                    | 8:1               | 91                 |
| 8     | L1     | dioxane          | 82                    | 14:1              | 94                 |

<sup>a</sup> Yields of isolated products. <sup>b</sup> Diastereomeric ratios determined by <sup>1</sup>H NMR spectroscopy. <sup>c</sup> Determined by chiral HPLC

### **Substrate Scope**



#### **Substrate Scope**



#### **Mechanistic Rationale**



#### Asymmetric Allylic Alkylation of 3-Substituted 1H-Indoles





### **Pd-AAA of 3-Substituted Indoles**



Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.



Zhang, X.; You, S.-L. *Chem. Sci.* **2014**, *5*, 1059. Zhang, X.; Liu, W.-B.; Tu, H.-F.; You, S.-L. *Chem. Sci.* **2015**, *6*, 4525.

#### Problems of Pd-AAA of 3-Alkylated 1*H*-Indoles



Problems: 
Chemoselectivity 
Regioselectivity 
Enantioselectivity

### **How To Solve Problems**



### Pd-AAA of 3-Alkylated 1H-Indoles



## **Optimization of The Reaction Conditions**

| Entry           | Ligand | x/y     | Borane                                               | Solv.             | Conv. <sup>b</sup> | Erc   |
|-----------------|--------|---------|------------------------------------------------------|-------------------|--------------------|-------|
| 1               | L1     | 5/15    | none                                                 | DCM               | <5%                | nd    |
| 2               | L1     | 5/15    | BEt <sub>3</sub>                                     | DCM               | full               | 76:24 |
| 3               | L2     | 5/15    | BEt <sub>3</sub>                                     | DCM               | full               | 92:8  |
| 4               | L3     | 5/15    | BEt <sub>3</sub>                                     | DCM               | full               | 94:6  |
| 5               | L4     | 5/15    | BEt <sub>3</sub>                                     | DCM               | full               | 95:5  |
| 6               | L4     | 5/15    | BEt <sub>3</sub>                                     | THF               | 66%                | 90:10 |
| 7               | L4     | 5/15    | BEt <sub>3</sub>                                     | MeCN              | 85%                | 95:5  |
| 8               | L4     | 5/15    | BEt <sub>3</sub>                                     | Tol               | full               | 93:7  |
| 9               | L4     | 5/15    | BEt <sub>3</sub>                                     | CHCl <sub>3</sub> | full               | 96:4  |
| 10              | L4     | 5/15    | 9-BBN-(C <sub>6</sub> H <sub>13</sub> )              | CHCI <sub>3</sub> | full               | 97:3  |
| 11              | L4     | 5/15    | Sia <sub>2</sub> B-(C <sub>6</sub> H <sub>13</sub> ) | CHCI <sub>3</sub> | <10%               | nd    |
| 12              | L4     | 2.5/7.5 | BEt <sub>3</sub>                                     | CHCI <sub>3</sub> | full               | 96:4  |
| 13              | L4     | 1/3     | BEt <sub>3</sub>                                     | CHCI <sub>3</sub> | full               | 94:6  |
| 14 <sup>d</sup> | L4     | 2.5/7.5 | BEt <sub>3</sub>                                     |                   | 75%                | nd    |

<sup>a</sup> Reaction conditions: 0.20 mmol of **1a**, x mol % of Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub>, y mol % of **L**, 0.24 mmol of BEt<sub>3</sub> and **2a**, in various solvents at 4 °C for 16 h. <sup>b</sup> Determined by <sup>1</sup>H NMR analysis. <sup>c</sup> Determined by HPLC on a chiral stationary phase. <sup>d</sup> The reaction was performed with 0.2 equiv of BEt<sub>3</sub>.

#### Scope of C3-Allylation of 3-Substituted 1*H*-Indoles



## **Optimization With Tryptophol 1f**



| Entry | Deviation from standard conditions                            | Yield <sup>b</sup> | Erc  |
|-------|---------------------------------------------------------------|--------------------|------|
| 1     | none                                                          | 93                 | 96:4 |
| 2     | DCM as solvent                                                | 88                 | 96:4 |
| 3     | reaction at rt                                                | 91                 | 94:6 |
| 4     | 9-BBN-( $C_6H_{13}$ ) as the borane                           | 91                 | 97:3 |
| 5     | 1 mol % of $Pd_2(dba)_3$ ·CHCl <sub>3</sub> and 3 mol % of L4 | 88                 | 94:6 |

<sup>a</sup> Standard conditions: 0.20 mmol of **1f**, 2.5 mol % of Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub>, 7.5 mol % of **L4**, 0.24 mmol of BEt<sub>3</sub> and **2a**, in CHCl<sub>3</sub> at 4 ° C for 16 h. <sup>b</sup> Isolated yield. <sup>c</sup> Determined by HPLC on a chiral stationary phase.

## **Scope of Tandem C3-Allylation/Cyclizations**



## **Scope of Tandem C3-Allylation/Cyclizations**



#### Gram Scale Experiment.



## **Bioactive Molecules Bearing DKP/DKM Motifs**





**Nocardioazine B** 

**Brevicompanine B** 



### Pd-AAA of the N-Boc-L-Tryptophan Methyl Ester



## Pd-AAA of the Cyclo(L-Trp-L-Pro) (DKP Motif)



## Pd-AAA of the Cyclo(L-Trp-S-HMA) (DKM Motif)



## **Proposed Catalytic Cycle**



#### Summary





Naturally occurring indole alkaloids display a broad range of anticancer, antibacterial, and antifungal properties. For example, borreverine is strongly active against Grampositive bacteria. As a result, these molecules provide an attractive platform for structure-activity relationship studies and lead compound discovery in drug development. Their indoline cores usually fuse with other hetero- or carbocyclic backbones, creating marvelous structural complexity and diversity.

In summary, we have reported the first use of VCP derivatives as electrophiles for the asymmetric allylation of C3-substituted 1H-indoles and tryptophan derivatives. Utilizing Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub> and stilbenederived Trost ligand L4, a broad range of 3,3-disubstituted indolenines and indolines has been prepared in a highly chemo-, regio-, and enantioselective fashion. This completely atom-economic transformation enables indoles bearing a pendant C3-nucleophile to cleanly react with VCPs, whereas employing a Lewis acid might be problematic. The reaction can be performed on the gram scale. The stereochemical outcomes of asymmetric functionalizations of tryptophan derivatives are well controlled by the chiral ligands, allowing us to expeditiously synthesize mollenine A. The indolenine products can be elaborated to intricate polycyclic compounds by making use of the newly installed imine and internal olefin motifs. More importantly, VCPs, like no other allylation reagents, introduce a nucleophilic malonate substituent through the Pd-AAA, providing an excellent handle for additional product derivatization.

#### Acknowledgement

