Literature Report I

Total Synthesis of (-)-Nahuoic Acid C_i (B_{ii})

Reporter: Xin-Wei Wang

Checker: Shu-Bo Hu

Date: 2017-11-20

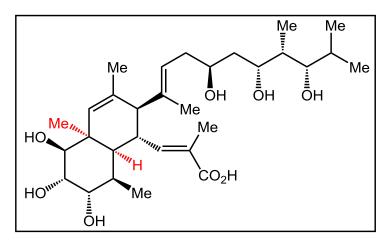
Liu, Q.; Deng, Y.; Smith, A. B. III J. Am. Chem. Soc. **2017**, 139, 13668-13671.

CV of Professor Smith, A. B. III

Background:

- **□ 1962-1966** B.S. & M.S. in Bucknell University;
- □ 1967-1972 Ph.D. in Rockefeller University;
- 1972-1973 RA in Rockefeller University;
- 1973-2017 University of Pennsylvania;
- 1998-2017 Editor-in-Chief of *Organic Letters*.

Smith, A. B. III


Research:

- Natural Product Synthesis;
- Bioorganic Chemistry;
- Materials Science.

Contents

- 1 Introduction
- Total Synthesis of (-)-Nahuoic Acid C_i (B_{ii})
- 3 Summary

Introduction

(-)-Nahuoic Acid C_i (B_{ii})

SCSGAA 0027

- It was isolated from Streptomyces sp. in 2016;
- It displays selective (S)-adenosylmethionine (SAM)-competitive inhibitor activity against the histone lysine methyltransferase SETD8 enzyme;
- It features 12 stereocenters and cis-decalin motifs in conjunction with polyol side chains.

Williams, D. E.; Izard, F.; Arnould, S.; Andersen, R. J. *J. Org. Chem.* **2016**, *81*, 1324-1332. Nong, X.-H.; Zhang, X.-Y.; Xu, X.-Y.; Wang, J.; Qi, S.-H. *J. Nat. Prod.* **2016**, *79*, 141-148.

Introduction

Nahuoic Acid

A:
$$R_1 = OH, R_2 = H$$
 (1)

$$B_i$$
: $R_1 = H$, $R_2 = OH$ (2)

$$C_i(B_{ii}): R_1 = R_2 = OH$$
 (3)

$$C_{ii}$$
: $R_1 = R_2 = H$ (4)

$$D_i(E_i): R_1 = OH, R_2 = H$$
 (5)

$$E_i$$
: $R_1 = H$, $R_2 = OH$ (6)

$$D_{ii}: R_1 = R_2 = H$$
 (7)

Williams, D. E.; Dalisay, D. S.; Li, F.; Amphlett, J.; Andersen, R. J. Org. Lett. 2013, 15, 414-417.
Williams, D. E.; Izard, F.; Arnould, S.; Andersen, R. J. J. Org. Chem. 2016, 81, 1324-1332.
Nong, X.-H.; Zhang, X.-Y.; Xu, X.-Y.; Wang, J.; Qi, S.-H. J. Nat. Prod. 2016, 79, 141-148.

Brook Rearrangement

[1,2]-Brook rearrangement

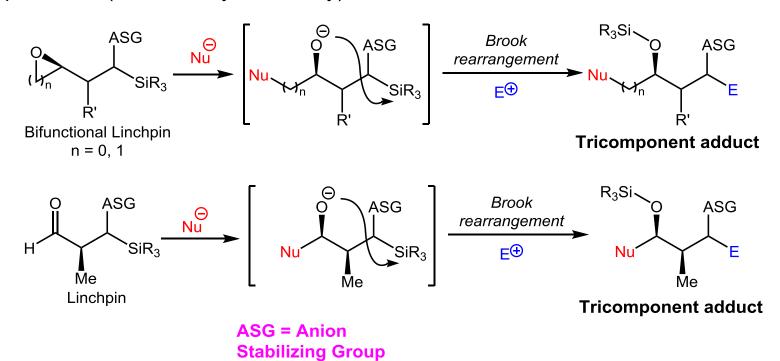
$$R^1$$
 SiR_3 R^2 SiR_3 R^2 SiR_3 R^2 SiR_3 R^2

[1,3]-Brook rearrangement

$$R^1$$
 SiR_3
 R^2
 SiR_3
 R^2
 SiR_3
 R^2
 R^2
 SiR_3

[1,4]-Brook rearrangement

驱动力: 氧对硅有更强的亲和力


键能: O-Si = 460 kJ/mol; C-Si = 346 kJ/mol

Type I and II ARC Tactics

A. Type I ARC (Anion Relay Chemistry)

$$\begin{array}{c} \text{ASG} \\ \text{ } \\ \text{SiR}_3 \\ \text{Linchpin} \end{array} \\ \begin{array}{c} \text{R'} \\ \text{ } \\ \text{R'} \end{array} \\ \begin{array}{c} \text{ASG} \\ \text{R'} \\ \text{E} \end{array} \\ \begin{array}{c} \text{Brook} \\ \text{rearrangement} \\ \text{R'} \\ \text{E} \end{array} \\ \begin{array}{c} \text{ASG} \\ \text{R'} \\ \text{E} \end{array}$$

B. Type II ARC (Anion Relay Chemistry)

Saegusa-Ito oxidation

$$Pd(0)$$
 + HOAc + O HO HOAc)₂

$$Pd(0) + O_2 \longrightarrow Pd \longrightarrow HOOPdOAc \longrightarrow Pd(OAc)_2 + TMSOOH$$

From Name Reactions by Jie Jack Li

Micalizio Coupling

Kolundzic, F.; Micalizio, G. C. J. Am. Chem. Soc. 2007, 129, 15112-15113.

Retrosynthetic Analysis

Retrosynthetic analysis

Structures of nahuoic acids

Nahuoic Acid

A:
$$R_1 = OH$$
, $R_2 = H$ (1) $D_i(E_i)$: $R_1 = OH$, $R_2 = H$ (5) E_i : $R_1 = H$, $R_2 = OH$ (2) E_i : $R_1 = H$, $R_2 = OH$ (6) $C_i(B_{ii})$: $R_1 = R_2 = OH$ (3) D_{ii} : $R_1 = R_2 = H$ (7) C_{ii} : $R_1 = R_2 = H$ (4)

Retrosynthetic Analysis

Synthesis of Side Chain (+)-9

Synthesis of Side Chain (+)-9

Asymmetric Diels-Alder Reaction

Entry	Conditions	Yield	Ee
1	Toluene/CH ₂ Cl ₂ , 120 °C, 48 h	74	0
2	1 eq. 25 , CH ₂ Cl ₂ , -40 °C, 24 h	71	73
3	20 mol% 25 , CH ₂ Cl ₂ , 0 °C to rt, 24 h	25	55
4	20 mol% 25 , 4 Å MS, CH ₂ Cl ₂ , -60 °C, 12 h	80	71
5	20 mol% 25, 4 Å MS, Toluene, -78 °C to -40 °C, 42 h	95	86

Dihydroxylation Reactions

Milas Hydroxylation

$$R_1$$
 R_2 R_2 R_3 R_4 R_5 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_9 R_9

Upjohn Dihydroxylation

Sharpless Asymmetric Dihydroxylation

$$R_1$$
 $K_2OsO_2(OH)_4/Ligand$ R_1 R_2 $R_3Fe(CN)_6 \text{ or NMO}$ R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8 R_9 R_9

Drawback: cis-alkenes, low enantioselectivity

Hydroxyl-Directed Alkyne-Alkene Coupling

Synthesis of (-)-Nahuoic Acid C_i (B_{ii})

Summary

- The first total synthesis;
- 16 steps (the longest linear sequence), 0.39% overall yield;
- Type II anion relay chemistry (ARC);
- Ti-catalyzed asymmetric Diels-Alder reaction;
- Micalizio alkoxide-directed alkyne-alkene tactic.

The First Paragraph

Nahuoic acid A, isolated by Anderson and co-workers in 2013 from a culture of a Stremptomyces sp. obtained from a tropical marine sediment, displays selective (S)-adenosylmethionine (SAM)-competitive inhibitor activity against the histone lysine methyltransferase SETD8 enzyme. In 2016, the same group reported the isolation of nahuoic acids B_i-E_i, which exhibit similar inhibitory effects on SETD8. In the same year, the Qi group independently reported the isolation of four related congeners, the nahuoic acids B_{ii}-E_{ii}, leading to a total of seven members of this architecturally intriguing family of polyketide acids. Herein, we reported the first total synthesis of a member of the nahuoic acid family, namely C_i (B_{ii}).

The Last Paragraph

In summary, we have achieved the first total synthesis of a member of the nahuoic acid family of cis-decalin-containing polyketides, namely Ci (B_{ii}), in a longest linear sequence of 16 steps. Highlights of the synthesis include Type II Anion Relay Chemistry (ARC) to construct the polyol chain, a Ti-catalyzed asymmetric Diels-Alder reaction to generate the cis-decalin skeleton in a highly enantiomerically enriched form, and a late-stage strategic large fragment union via the Micalizio alkoxide-directed alkyne-alkene tactic. Studies toward the synthesis of other members of the nahuoic acid family, as well as the development of analogues for biological evaluations, continue in our laboratory.

Thanks for your attention