Literature Report 4

Ni-catalyzed asymmetric allylation of secondary phosphine oxides

Reporter: Xiang Li Checker: Zi-Biao Zhao Date: 2019-11-11

Zhang, Q.-W. *et al. J. Am. Chem. Soc.* **2019**, *141*, 16584. Kalnmals, C. A. *et al. J. Am. Chem. Soc.* **2019**, *141*, 14098.

3

Introduction

2 Ni-catalyzed asymmetric allylation of secondary phosphine oxides

......

Pd-catalyzed asymmetric allylic alkylation of phosphinic acids

CV of Prof. Qing-Wei Zhang

Education:

2003-2007 B.A., Lanzhou University
2007-2012 Ph.D., Lanzhou University
2012-2015 Postdoc, Tsinghua University
2015-2018 Postdoc, University of California, Berkeley
2018-Present Professor, USTC

Research:

- □ Transition-metal-catalysis asymmetric synthesis
- **D** Chiral phosphine, silicon chemistry
- Mechanism research

Introduction

Transition metal catalysisOrganocatalysis

Introduction

Catalytic asymmetric synthesis of *P*-stereogenic phosphines

a) Inter/intra molecular desymmetic reactions

· 1,4-addition · [2+2+2] · C-H activation

b) **DKR** of secondary phosphines

$$R^{1} \stackrel{P}{\underset{R^{2}}{\overset{H}{\overset{H}}}} H \xrightarrow{\text{T.M. Cat.}} R^{1} \stackrel{P}{\underset{R^{2}}{\overset{H}{\overset{H}}} R^{3}$$

alkylation · arylation · 1,6-addition

c) Arylation of secondary phosphines oxides

d) KR of secondary phosphines oxides

2 equiv $R = {}^{t}BuCONH$ - moderate to high ee

1,4- addition

[2+2+2]

Tanaka, K. et al. Angew. Chem. Int. Ed. 2008, 47, 3410.

C-H activation

Cramer, N. et al. Angew. Chem. Int. Ed. 2018, 57, 12901.

C-H activation

Cramer, N. et al. Angew. Chem. Int. Ed. 2018, 57, 12901.

Cramer, N. et al. Angew. Chem. Int. Ed. 2018, 57, 12091.

NHC-catalyzed

Chi, Y. R. et al. J. Am. Chem. Soc. 2016, 138, 7524.

DKR of secondary phosphines

DKR of secondary phosphines

DKR of secondary phosphines

1,6-addition

Hayashi, T. et al. J. Am. Chem. Soc. 2014, 136, 4865.

Arylation of secondary phosphines oxides

Gaunt, M. J. et al. J. Am. Chem. Soc. 2016, 138, 13183.

KR of secondary phosphines oxides

Cai, Q. et al. Tetrahedron Lett. 2016, 57, 5308.

Asymmetric allylation of secondary phosphine oxides

Catalytic Asymmetric Synthesis of P-Stereogenic Phosphines

a) Inter/intra molecular desymmetic reactions

· 1,4-addition · [2+2+2] · C-H activation

(+/-)

1.2 equiv

(+/-)-SPO

1.0 equiv

c) Arylation of secondary phosphines oxides

b) **DKR** of secondary phosphines

$$R^{1} \stackrel{P}{\underset{R^{2}}{\overset{}}} H \xrightarrow{\text{T.M. Cat.}} R^{1} \stackrel{P}{\underset{R^{2}}{\overset{}}} R^{3}$$

- Arylation · alkylation · 1,6-addition
- d) KR of secondary phosphines oxides

2 equiv $R = {}^{t}BuCONH$ - moderate to high ee

e) This work: **DYKAT/KR** of secondary phosphine oxides Ar - P + H + R - OAc - (S,S)-BDPP + Ar - Alkyl - Ar - Alkyl - Ar - Alkyl - Alkyl - Ar - Alkyl - Alkk

high to excellent ee

DYKAT with KOAc as base **KR** with K_3PO_4 as base Exclusively linear selectivity Only *E*-alkenes obtained

Optimization of reaction conditions^a

^{*a*} Ni(cod)₂, (*S*,*S*)-BDPP in dioxane was stirred for 10 min, followed by the addition of **1a**, **2a**, and additive (1.5 equiv). ^{*b*} NMR yield with PO(OMe)₃ as internal standard; yield of remaining **1a** is shown in parentheses. ^{*c*} Determined by chiral HPLC analysis; ee of remaining **1a** is shown in parentheses. ^{*d*} 2 h. ^{*e*} 2 mL dioxane. ^{*f*} 48 h. ^{*g*} 72 h. ^{*h*} Isolated yield.

L5: (S,S)-BDPP

Scope of phosphine oxides

Mechanistic study

Figure 1. Mechnistic study. Green dots, ee of remaining 1b; yellow dots, ee of 3z; blue columns, conversion of 1b.

Proposed reaction mechanism in terms of DYKAT

Pd-catalyzed asymmetric allylic alkylation of phosphinic acids

Pd-catalyzed asymmetric allylic alkylation of phosphinic acids

Optimization of reaction conditions^a

Entry	L	Solvent	Base	Т	Yield (%)	D.r.	Ee (%)	
1	L1	THF	Cs ₂ CO ₃	r.t.	83	1:1	96/93	
2	L2	THF	Cs_2CO_3	r.t.	97	2:1	80	
3	L3	THF	Cs ₂ CO ₃	r.t.	70	1:1	91/92	
4	L4	THF	Cs_2CO_3	r.t.	70	6:1	97	
5	L4	2-Me-THF	Cs ₂ CO ₃	r.t.	77	5:1	94	
6	L4	Dioxane	Cs_2CO_3	r.t.	89	5:1	95	
7	L4	DME	Cs ₂ CO ₃	r.t.	77	4:1	91	
8	L4	DCE	Cs ₂ CO ₃	r.t.	86	4:1	95	
9	L4	Toluene	Cs ₂ CO ₃	r.t.	92	4:1	94	
10	L4	THF	Li ₂ CO ₃	r.t.		no reaction		
11	L4	THF	K ₂ CO ₃	r.t.	67	4:1	-	
12	L4	THF	NEt ₃	r.t.	77	5:1	90	
13	L4	THF	Cs ₂ CO ₃	0 °C	76	5.5:1	93	
14	L4	THF	Cs ₂ CO ₃	40 °C	79	4.5:1	93	
15 ^{<i>b</i>}	L4	THF	Cs ₂ CO ₃	r.t.	96	7:1	97	

^a All reactions performed on 0.1 mmol scale. Yields are isolated yields; d.r. determined by crude ³¹P NMR, and ee determined by chiral HPLC. In diastereoselective cases, only the ee of the major diastereomer is reported. ^b Reaction concentration of 0.1 M, based on phosphinic acid.

Scope of phenyl-substituted phosphinic acids^a

Zhang, Q.-W. et al. J. Am. Chem. Soc. 2019, 141, 16584.

Kalnmals, C. A. et al. J. Am. Chem. Soc. 2019, 141, 14098.

The first paragraph

Enantioenriched *P*-stereogenic phosphines have served as important chiral ligands for transition metals as well as organocatalysts. However, they are less studied compared to their counterparts that have chiral carbon backbones, in part due to their less availability and synthetic challenges. Traditional methods to synthesize *P*-stereogenic phosphines require the use of stoichiometric amounts of chiral reagents; such as methods include resolution, auxiliary-induced diastereoselective substitution, and enantioselective deprotonation/derivatization reactions. Ephedrine-based strategies are also considered as reliable and robust methods for the preparation of *P*-stereogenic phosphines.

The last paragraph

In summary, we have achieved the first example of nickel-catalyzed dynamic kinetic asymmetric transformation (DYKAT) allylation of SPO. A series of *P*-stereogenic tertiary phosphine oxides were synthesized from both racemic allylic esters and secondary phosphine oxides (SPO). The kinetic and racemization study revealed the origin of the DYKAT reaction which relies on the Ni(II) catalyzed racemization of the SPO when KOAc was used as an additive. The finding of this research will expand the applications of SPO in the synthesis of *P*-stereogenic phosphines.

Thanks for your attention