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Introduction of Disorazoles

 Twenty-nine disorazoles were isolated from Sorangium cellulosum iny g
1993.

 The disorazoles are macrocyclic dilactones of two 2-pentadecyloxazol-
4-carboxylic acids4-carboxylic acids.

 The disorazoles proved to be highly cytotoxic and active against fungi.
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Introduction of Disorazoles
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Stille Cross-Coupling
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Suzuki Cross-Coupling
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Yamaguchi  Esterification
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Yamaguchi  Macrolactonization
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Wittig Reaction 
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Retrosynthetic Analysis of Disorazole A1
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Retrosynthetic Analysis of Disorazole B1
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Synthesis of Vinyl Boronic Acid 4 and Iodide 5
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Synthesis of Vinyl Boronic Acid 4 and Iodide 5
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Synthesis of Vinyl Bromide 6 
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Synthesis of Vinyl Bromide 6 
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Synthesis of Aldehyde 8
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Total Synthesis of Disorazole A1
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Total Synthesis of Disorazole A1
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Total Synthesis of Disorazole A1
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Total Synthesis of Disorazole B1
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Total Synthesis of Disorazole B1
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Total Synthesis of Disorazole B1
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Summary

 Disorazole A1: 18 steps 1 59% overall yield Disorazole A1: 18 steps, 1.59% overall yield
Disorazole B1: 15 steps, 14.66% overall yield
6,8,23,25-tetra-epi-disorazole B1: 16 steps, 0.12% overall yield

 The first total syntheses of disorazoles A and B The first total syntheses of disorazoles A1 and B1

 The syntheses were achieved through a series of coupling reactions,
including Wittig reaction, Suzuki cross-coupling, Stille cross-coupling,
Y hi t ifi ti d Y hi l t i tiYamaguchi esterification and Yamaguchi macrolactonization
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The First Paragraph 

该类化合物的来源和生物活性

分析该类化合物在合成上的挑战分析该类化合物在合成上的挑战

概括本文的工作内容
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The First Paragraph 

The disorazoles are a distinguished class of tubulin binding antitumor

agents due to their unique mode of action and high potencies against a

broad range of cancer cell lines. Although too cytotoxic to be used as

anticancer drugs, these natural products may become powerful

payloads for antibody−drug conjugates (ADCs), a hotly pursued

paradigm for targeted personalized cancer therapies. Elegant total

syntheses of disorazole C1 and related synthetic studies have been

t d F th b f thi f il f d di l Areported. From the members of this family of compounds, disorazole A1

(1, Figure 1) stands as the flagship, not only because it is the most

studied but also due to its single digit picomolar potencies andstudied, but also due to its single digit picomolar potencies and

synthetically challenging structure.
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The First Paragraph 

Indeed, a total synthesis of disorazole A1 has not been reported, despite

several studies directed toward this goal. Disorazole B1 whose structureg

has only been partially assigned as 2 (C2 symmetric) or 3 (6,8,23,25-

tetra-epi-disorazole B1, Figure 1) presents another challenging calling to

both structural elucidation and total synthesis. In this communication, we

report: (a) total synthesis of disorazole A1 (1); (b) total synthesis of

disorazole B1 (2) and 6,8,23,25-tetra-epi-disorazole B1 (3); and (c) full

assignment of disorazole B1 as structure 2.
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The Last Paragraph 

概述本文的工作内容

表明工作意义及潜在应用表明 作意义及潜在应用
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The Last Paragraph 

Representing the first total syntheses of disorazoles A1 (1) and B1 (2),

d li th f ll t t l i t f di l B thand revealing the full structural assignment of disorazole B1, the

described chemistry could lead to wide scope explorations of

structure activity relationships (SARs) through analogue designstructure−activity relationships (SARs) through analogue design,

synthesis and biological evaluation within the disorazole family of

compounds from which highly potent cytotoxic agents may emerge ascompounds, from which highly potent cytotoxic agents may emerge as

potential payloads for antibody−drug conjugates (ADCs).
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Appel Reaction
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Still-Gennari Reaction

P

O

R1O
R1O

O

OR2

H

-HBase
P

O

R1O
R1O

O

OR2

M P

O

R1O
R1O

O

OR2

M

P

O

R1O
R1O

O

OR2

M

Base M
R1O M R1O

O
Kanti addition

(slow)
Ksyn addition

(slower)P

O

R1O
1

O

OR2

M

P

O

R1O
1

O

OR2

M

P

O

R1O

O
M

R3 H
R1O

OR
R1O

OR

H R3

O

R3 H

O

TS (anti) TS (syn)

PR1O
R1O

OR2

Kanti
(fast)

Ksyn
(fast)

O O
M

Kcis OM R3 O O
M

KtransOMR3

P
O

OR1O
R1O

P
O

OR1O
R1O

R3

PO OR1

OR1

OR2

cis
(fast)

O P

R3

O
OR1M

CO2R2

R3

CH2O2R2

(Z)-Alkene

PO OR1

OR1

OR2

trans
(fast)

O P

R3

O
OR1M

CO2R2CO2R2

(E)-Alkene

R3

cis trans

OR1OR1 R3

3
2

(Z) Alkene
major

(E) Alkene
minor

cis
oxaphosphetane

trans
oxaphosphetane



Sonogashira Cross-Coupling
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Dess-Martin Oxidation
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