Literature Report VI

Palladium-Catalyzed Asymmetric Intramolecular Reductive Heck Desymmetrization of Cyclopentenes: Access to Chiral Bicyclo[3.2.1]octanes

> Reporter: Xin-Wei Wang Checker: Chang-Bin Yu Date: 2019-6-3

Jia, Y.-X. *et al. J. Am. Chem. Soc.* **2015**, *137*, 4936. Yao, H. *et al. Angew. Chem. Int. Ed.* **2019**, *58*, 2884.

CV of Professor Yao, H.

Background:

- **1994-1998** B.S. in China Pharmaceutical University;
- □ 1998-2001 M.S. in China Pharmaceutical University;
- **2001-2004** Ph.D. in SIOC;
- **2004-2007** Postdoctoral, in Stanford University;

Yao, H.

2008-Now Professor, China Pharmaceutical University.

Research:

Total synthesis of biologically active natural products;

Catalytic organic reaction.

2 Asymmetric Reductive Heck Reaction

Introduction

Present Works for Reductive Heck Reaction

Intermediates Lacking β-Hydrogen

Stabilized Pd-enolate Intermediates

Geometrically Constrained Intermediates

First Asymmetric Reductive Heck Reaction

Diaz, P. et al. Tetrahedron 1998, 54, 4579.

Enantioselective Reductive Heck Reaction

Jia, Y.-X. et al. J. Am. Chem. Soc. 2015, 137, 4936.

Optimization of the Reaction Conditions

Entry ^a	L	Based	Solvent	Yield (%) ^b	Ee (%) ^c
1	(<i>R</i>)-BINAP	Et ₃ N	THF	<5	-
2	(<i>R</i>)-BINAP	Et ₃ N	toluene	<5	-
3	(<i>R</i>)-BINAP	Et ₃ N	MeCN	36	96
4	(<i>R</i>)-BINAP	Et ₃ N	DCE	35	96
5	(<i>R</i>)-BINAP	Et ₃ N	MeOH	79	97
6	(<i>R</i>)-BINAP	Et ₃ N	EtOH	75	97
7	(<i>R</i>)-BINAP	Et ₃ N	<i>i</i> PrOH	70	96
8	(<i>R</i>)-BINAP	TMEDA	MeOH	77	98
9	(<i>R</i>)-BINAP	DIPA	MeOH	80	97
10	(<i>R</i>)-BINAP	DABCO	MeOH	78	97

Optimization of the Reaction Conditions

$\begin{array}{c} & Pd(OAc)_2 (5 \text{ mol}\%) \\ L (6 \text{ mol}\%) \\ HCO_2H (2.0 \text{ equiv}) \\ Base (2.0 \text{ equiv}) \\ Solvent, 100 \ ^\circ C \end{array}$						
Entry ^a	L	Based	Solvent	Yield (%) ^b	Ee (%) ^c	
11	(<i>R</i>)-BINAP	DBU	MeOH	69	97	
12 ^d	(<i>R</i>)-BINAP	HCO ₂ NH ₄	MeOH	80	93	
13 ^d	(<i>R</i>)-BINAP	HCO ₂ Na	MeOH	85	97	
14 ^d	(<i>R</i>)-Tol-BINAP	HCO ₂ Na	MeOH	82	97	
15 ^d	(<i>R</i>)-Segphos	HCO ₂ Na	MeOH	82	82	
16 ^d	(<i>R</i>)-Synphos	HCO ₂ Na	MeOH	81	98	
17 ^{d,e}	(<i>R</i>)-BINAP	HCO ₂ Na	MeOH	82	96	

^a Reaction conditions: **1a** (0.2 mmol), $Pd(OAc)_2$ (5 mol %), **L** (6 mol %), and base (0.4 mmol) in the indicated solvent (2.0 mL) in a sealed Schlenk tube at 100 °C for 10 h. ^b Isolated yields. ^c Determined by chiral HPLC. ^d In the absence of HCO₂H. ^e At 80 °C for 36 h.

Substrate scope

		Br = N	Pd(OAc) ₂ (5 mol%) (<i>R</i>)-BINAP (6 mol%) HCO ₂ Na (2.0 equiv) MeOH, 100 °C R ³		R^3	
Entry ^a	Product	R ¹	R ²	R ³	Yield (%) ^b	Ee (%) ^c
1	2a	Н	Ме	Н	85	97
2	2b	Н	Bn	н	78	97
3	2c	Н	CO ₂ Me	Н	71	99
4	2d	Н	Ph	Н	81	97
5	2e	Н	4-MeO-C ₆ H ₄	Н	88	92
6	2 f	Н	4-Me-C ₆ H ₄	Н	75	97
7	2g	Н	4-CI-C ₆ H ₄	Н	68	96
8	2h	Н	$4-CF_3-C_6H_4$	Н	64	98
9	2i	Н	3-Me-C ₆ H ₄	Н	62	97
10	2j	Н	$2-Me-C_6H_4$	Н	15	94
11	2k	Н	2-naphthyl	Н	68	97
12	21	Н	2-furyl	Н	67	98
13	2m	Н	2-thienyl	Н	62	99

Substrate scope

		$ \overset{\text{Br}}{\underset{O}{\overset{N}{\overset{N}}}} \overset{\text{P}}{\underset{N}{\overset{N}{\overset{N}}}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\underset{N}{\overset{N}{\overset{N}}}} \overset{\text{P}}{\underset{N}{\overset{N}{\overset{N}}}} \overset{\text{P}}{\underset{N}{\overset{N}{\overset{N}}}} \overset{\text{P}}{\underset{N}{\overset{N}{\overset{N}}}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\underset{N}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\underset{N}{\overset{N}}} \overset{\text{P}}{\overset{N}} \overset{\text{P}}{\underset{N}} \overset{\text{P}}{\underset{N}}} \overset{\text{P}}{\underset{N}} \overset{\text{P}}{\underset{N}} \overset{\text{P}}{\underset{N}} \overset{\text{P}}}{\overset{N}} \overset{\text{P}}{\overset{N}} \overset{\text{P}}{\overset{N}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}}{\overset{N}} \overset{\text{P}}{\overset{N}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}}} \overset{\text{P}}} \overset{\text{P}} \overset{\text{P}$	Pd(OAc) ₂ (5 mol%) (<i>R</i>)-BINAP (6 mol%) HCO ₂ Na (2.0 equiv) MeOH, 100 °C		R ³	
Entry ^a	Product	R ¹	R ²	R ³	Yield (%) ^b	Ee (%) ^c
14	2n	Н	Ph	5-Me	76	98
15	20	Н	Ph	5-MeO	80	98
16	2р	Н	Ph	5-Cl	46	98
17	2q	Н	Ph	6-MeO	75	98
18	2r	Н	Ph	6,7-(CH) ₄	55	89
19 ^d	2s	3-Me	Ме	Н	22	29
20	2t	4-Me	Ме	Н	85	98
21	2u	5-Me	Ме	Н	76	97
22	2v	5-Cl	Ме	Н	73	99
23	2w	5-F	Ме	Н	67	97

^a Reaction conditions: **1** (0.2 mmol), $Pd(OAc)_2$ (5 mol %), ligand (*R*)-BINAP (6 mol %), and HCO_2Na (0.4 mmol) in MeOH (2.0 mL) at 100 °C for 10–36 h. ^b Isolated yields. ^c Determined by chiral HPLC. ^d At 120 °C for 20 h.

Synthetic Transformations of Product 2a

Ni-Catalyzed Reductive Heck Cyclization

Zhou, J. S. et al. Angew. Chem. Int. Ed. 2017, 56, 12727.

Asymmetric Synthesis of Oxindoles

Zhu, J. et al. Angew. Chem. Int. Ed. 2017, 56, 3987.

Lautens, M. et al. Angew. Chem. Int. Ed. 2017, 56, 11927.

Pd-Catalyzed Reductive Heck Cyclization

Tong, X. et al. Org. Biomol. Chem. 2017, 15, 4803.

Zhang, J. et al. Angew. Chem. Int. Ed. 2018, 57, 10373.

Synthesis of Chiral Indanones

Buchwald, S. L. et al. J. Org. Chem. 2007, 72, 9253.

Synthesis of Chiral Indanones

Zhou, J. et al. Angew. Chem. Int. Ed. 2015, 54, 6531.

Asymmetric Hydroarylation of Norbornene

Zhou, Q.-L. et al. Tetrahedron Asymmetry 2000, 11, 1255.

Zhou, J. et al. Chem. Commun. 2013, 49, 11758.

Desymmetrization of Cyclopentenes

Yao, H. et al. Angew. Chem. Int. Ed. 2019, 58, 2884.

Optimization of Reaction Conditions

Pd(OAc)₂

L4

Optimization of Reaction Conditions^a

Entry ^a	[Pd]	L	Yield (%) ^b	2a Ee (%) ^c	3a Yield [%]
5	Pd(OAc) ₂	L5	<2	-	88
6	Pd(OAc) ₂	L6	99	78	<2
7	Pd(OAc) ₂	L7	98	92	<2
8	Pd(OAc) ₂	L8	98	95	<2
9	[Pd(allyl)Cl] ₂	L8	15	58	52
10	Pd₂dba₃·CHCl₃	L8	43	89	53
11 ^b	Pd(OAc) ₂	L8	98	96	<2
12 ^{b,c}	Pd(OAc) ₂	L8	98	96	<2
13 ^{b,c,d}	Pd(OAc) ₂	L8	98	96	<2
14 ^{b,d,e}	Pd(OAc) ₂	L8	<2	97	<2

^a Reaction conditions: **1a** (0.1 mmol), [Pd] (10 mol%), ligand (20 mol%), HCO₂Na (0.5 mmol) in 1 mL EtOH, at 80 °C, 12 h, under argon, isolated yields. The ee values were determined by chiral-phase HPLC. ^b 2.5 mol% Pd(OAc)₂ and 5 mol% **L8** were used. ^c 1.5 equiv HCO₂Na was added. ^d in 0.5 mL EtOH. ^e without HCO₂Na.

Substrate Scope of the Haloaryl Moiety

^a 5 mol% Pd(OAc)₂ and 10 mol% **L8** were used.

Substrate Scope of the Cyclopentenes

 a HCO₂NH₄ (0.2 mol) was used.

Further Transformation of (R,R)-2a

Deuterium Labeling Experiments

Deuterium-labeling experiment in [D₆]ethanol

Proposed mechanism

Summary

up to 99% ee

Jia, Y.-X. et al. J. Am. Chem. Soc. 2015, 137, 4936.

Yao, H. et al. Angew. Chem. Int. Ed. 2019, 58, 2884.

In 1983, Cacchi and co-workers described a Pd-catalyzed cross-coupling reaction between any halides and either enones or enals to form conjugate adducts in the presence of hydride species, and it is now known as the reductive Heck reaction. After that, such a reaction has proven to be an efficient and tempting method to construct saturated C-C bonds because of the avoidance of air- and moisture-sensitive organometallic reagents, and it has been widely applied in the synthesis of natural products and pharmaceuticals. However, because of the high propensity of the β-hydride elimination pathway (Heck reaction), the asymmetric version of the reductive Heck reaction is still in its infancy. Prior works on the asymmetric intramolecular reductive Heck reactions of either 1,1-disubstituted olefins or 2-substituted indoles have been realized.

The First Paragraph

In these elegant works, the in situ generated alkylpalladium intermediates were efficiently trapped by the hydride donors to deliver the asymmetric reductive Heck products because they lacked the β -hydrogen. Additionally, the groups of Buchwald, Zhou and Minnaard independently disclosed another type of asymmetric intramolecular reductive Heck reaction with (pseudo)halide-substituted chalcones, in which the stabilized transconfigured H-bound Pd-enolate intermediates did not undergo β-hydride elimination to form the Heck products. Moreover, specific bicyclic alkenes, such as norbornene and its derivatives have also been employed in the asymmetric reductive Heck reactions. In these reactions, the rigidity of the carbocyclic frameworks prevented the alkylpalladium intermediates from undergoing rotation and β -hydride elimination.

Very recently, the racemic reductive Heck reactions of unactivated aliphatic alkenes possessing eliminable β -hydrogen atoms have been realized by the groups of Loh and Engle. However, to the best of our knowledge, protocols that enable asymmetric reductive Heck reactions of unactivated aliphatic alkenes have not been described until now.

In conclusion, we have described a Pd-catalyzed asymmetric intramolecular reductive Heck desymmetrization reaction of cyclopentenes, having eliminable β -hydrogen atoms, to achieve chiral bicyclo[3.2.1]octanes bearing quaternary and tertiary carbon stereocenters in good yields and with excellent enantioselectivities. Additionally, the reaction can incorporate deuterium into the bicyclo[3.2.1]octanes with complete deuteration, and excellent diastereo- and enantioselectivities.

Acknowledgement

