
Catalytic Asymmetric Cascade Vinylogous Mukaiyama 1,6-Michael/Michael Addition of 2-Silyloxyfurans with Azoalkenes

Reporter: Bo Wu Checker: Xiang Gao Date: 2015/09/15

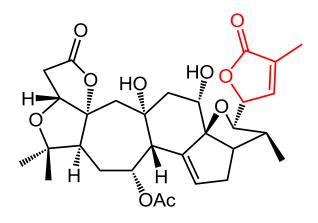
Wang, C.-J. *et al.* J. Am. Chem. Soc. **2015**, 137, 10124.

Chun-Jiang Wang Wuhan University

Contents

Introduction

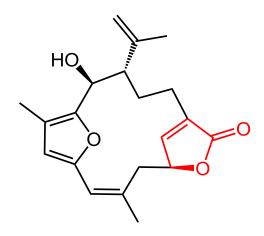
Asymmetric Vinylogous Mukaiyama–Michael


Addition of 2-Silyloxyfurans

Asymmetric Vinylogous Michael Addition of

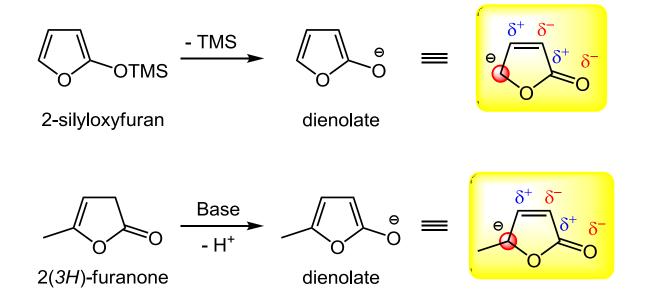
Furanones

Summary

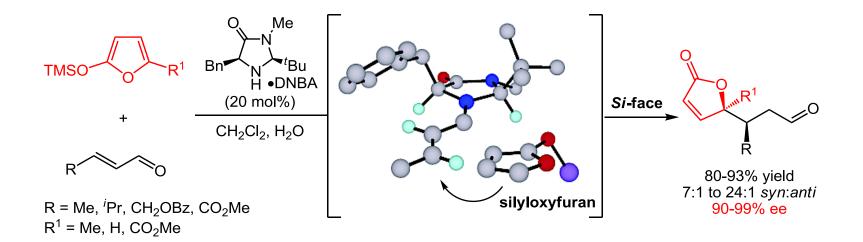

Introduction


Nortriterpednoid

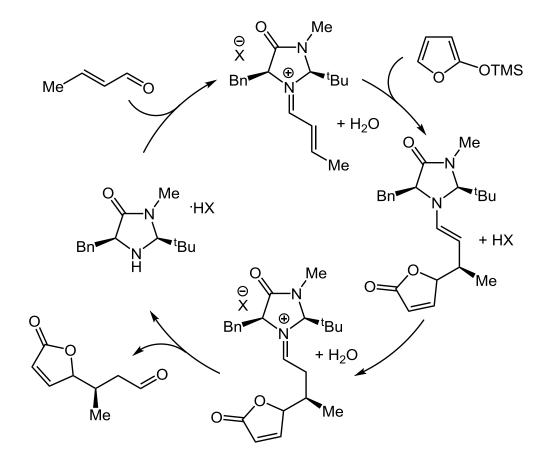
Schisandra Chinensis 五味子


Bipinnatin J

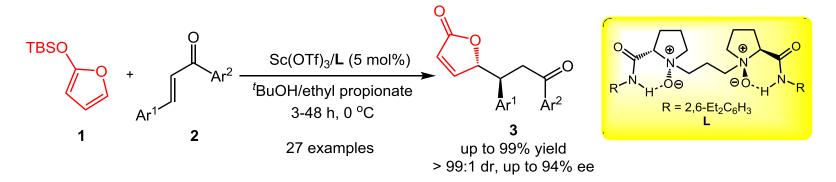
Antillogorgia Bipinnata

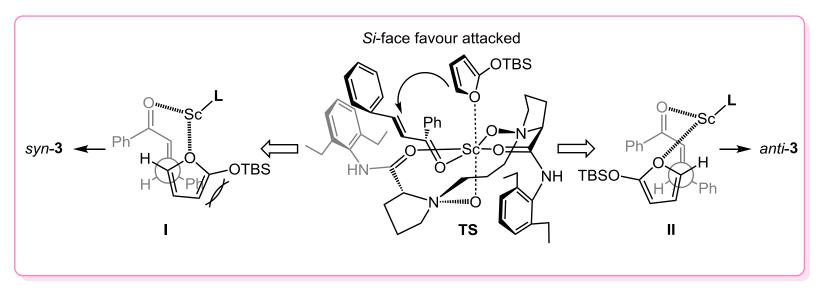

Introduction

Two approaches to generate the γ -anion of 2(5*H*)-furanone

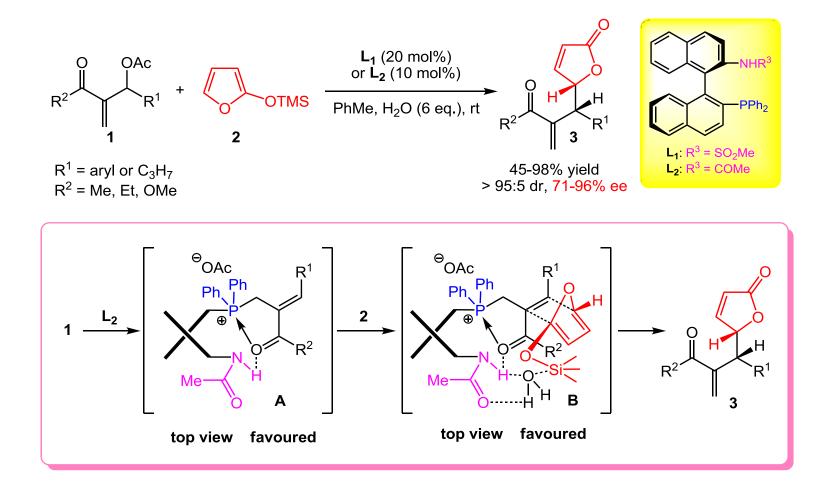

Asymmetric Vinylogous Mukaiyama–Michael Addition of 2-Silyloxyfurans with α,β-Unsaturated Aldehydes

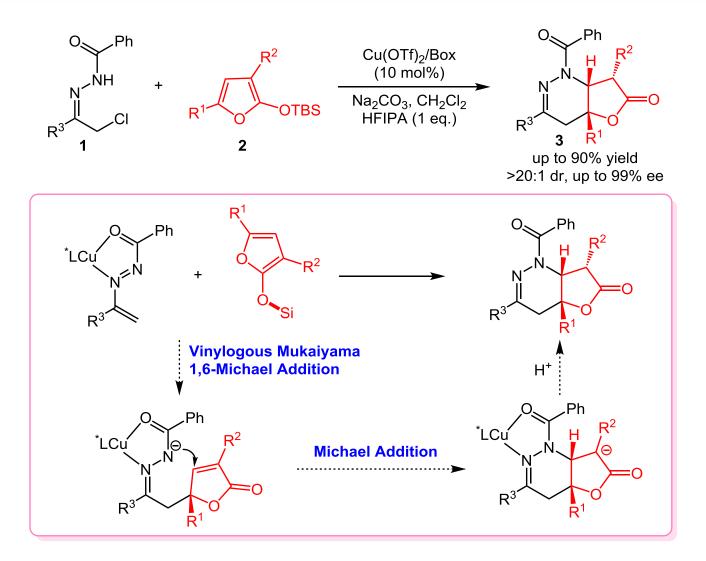
Iminium catalytic system


MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2003, 125, 1192.


Plausible Reaction Mechanism

MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2005, 127, 15051.


Asymmetric Vinylogous Mukaiyama–Michael Addition of 2-Silyloxyfurans with α,β-Unsaturated Ketones

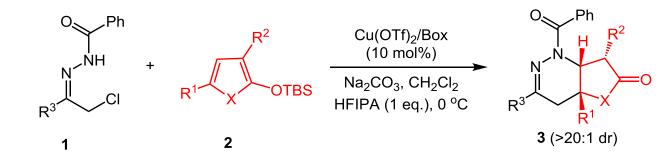

Feng, X. et al. Org. Biomol. Chem. 2011, 9, 5748.

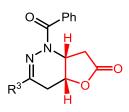
Asymmetric Vinylogous Mukaiyama–Michael Addition of 2-Silyloxyfurans with Morita-Baylis-Hillman Acetates

Shi, M. et al. J. Am. Chem. Soc. 2008, 130, 7207.

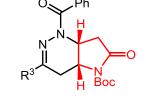
Asymmetric Vinylogous Mukaiyama–Michael/Michael Addition of 2-Silyloxyfurans with Azoalkenes

Wang, C.-J. et al. J. Am. Chem. Soc. 2015, 137, 10124.

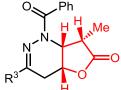

Optimization of the Reaction Conditions

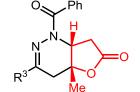

Pr		+ (2a 2b	•: <i>Si</i> = TMS •: <i>Si</i> = TES •: <i>Si</i> = TES •: <i>Si</i> = TBS	M/L (10 Na ₂ CO ₃ ,	CH ₂ Cl ₂	O Ph H N O H O H A A A A A A A A A A A A A A A A	≻= 0 Ir
Entry	2	[M]	L	Additive	T (°C)	Yield (%)	Ee (%)
1	2a				rt	45	
2	2a	$CuBF_4$	L ₁		rt	50	64
3	2a	Cu(OTf) 2	L ₁		rt	55	75
4	2a	Cu(OTf) ₂	L ₁	IPA	rt	69	75
5	2a	Cu(OTf) 2	L ₁	HFIPA	rt	85	75
6	2a	Cu(OTf) 2	L ₁	H_2O	rt	71	73
7	2a	Cu(OTf) ₂	L ₂	HFIPA	rt	78	10
8	2a	Cu(OTf) ₂	L_3	HFIPA	rt	82	15
	Fe (S,S)	PPh ₂ p)-Phosferrox	L ₁ : R = ^t Bu L ₂ : R = ^t Pr L ₃ : R = Ph L ₄ : R = Bn	R (S,	N N R S)-Bisoxazoline	L ₅ : R = ^t Bu L ₆ : R = ⁱ Pr L ₇ : R = Ph L ₈ : R = Bn	

Optimization of the Reaction Conditions

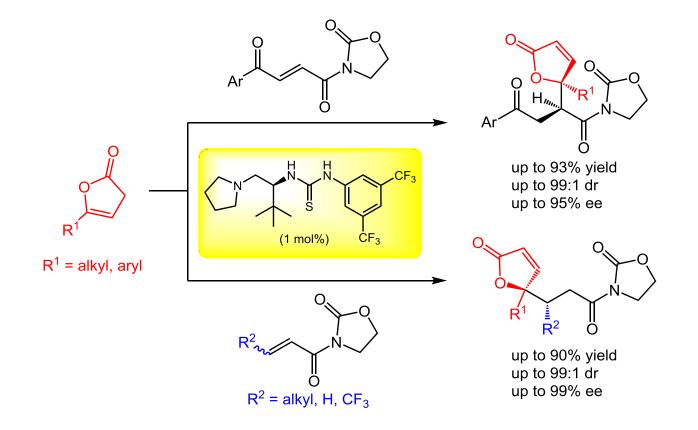

Ph	O N N N N N N N N N N O N N N N N N N N	+ (2a 2b	• S <i>i</i> = TMS • S <i>i</i> = TES • S <i>i</i> = TES • S <i>i</i> = TBS	M/L (10 Na ₂ CO ₃ ,	CH ₂ Cl ₂	O Ph N H H H H H H H H H H H H H H H H H H)—o Ir
Entry	2	[M]	L	Additive	T (°C)	Yield (%)	Ee (%)
9	2a	Cu(OTf) ₂	L ₄	HFIPA	rt	75	17
10	2a	Cu(OTf) ₂	L_5	HFIPA	rt	82	90
11	2a	Cu(OTf) ₂	L_6	HFIPA	rt	85	47
12	2a	Cu(OTf) ₂	L ₇	HFIPA	rt	81	56
13	2a	Cu(OTf) ₂	L ₈	HFIPA	rt	77	33
14	2a	Cu(OTf) ₂	L_5	HFIPA	0	87	95
15	2b	Cu(OTf) ₂	L_5	HFIPA	0	83	95
16	2c	Cu(OTf) ₂	L ₅	HFIPA	0	85	97
	Fe (S,S	PPh_2 p)-Phosferrox	L ₁ : R = ^t Bu L ₂ : R = ⁱ Pr L ₃ : R = Ph L ₄ : R = Bn	R (S,t	N N R S)-Bisoxazoline		

Substrate Scope

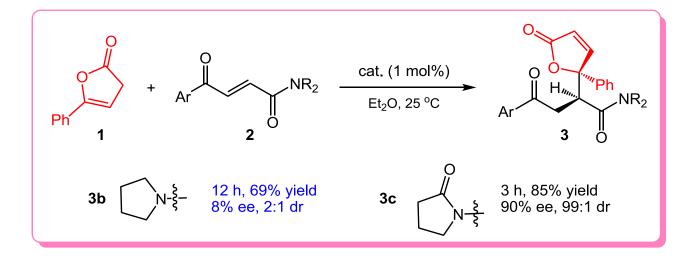


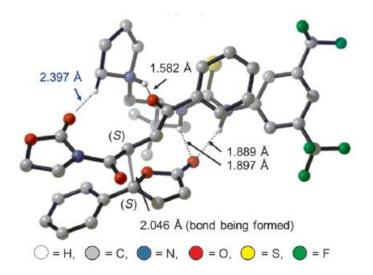

3a: $R^3 = Ph$, 85% yield, 97% ee **3b**: $R^3 = p$ -Br-C₆H₄, 86% yield, 94% ee **3c**: $R^3 = p$ -Me-C₆H₄, 80% yield, 96% ee **3d**: $R^3 = p$ -MeO-C₆H₄, 87% yield, 94% ee **3e**: $R^3 = m$ -Me-C₆H₄, 78% yield, 92% ee **3f**: $R^3 = 2$ -Naphthyl, 88% yield, 94% ee **3g**: $R^3 = PhCH=CH$, 83% yield, 71% ee

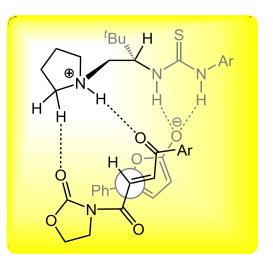
3h: \mathbb{R}^3 = Ph, 90% yield, 92% ee **3i**: $\mathbb{R}^3 = p$ -Br-C₆H₄, 87% yield, 95% ee **3j**: $\mathbb{R}^3 = o$ -F-C₆H₄, 82% yield, 97% ee **3k**: $\mathbb{R}^3 = p$ -Me-C₆H₄, 80% yield, 98% ee



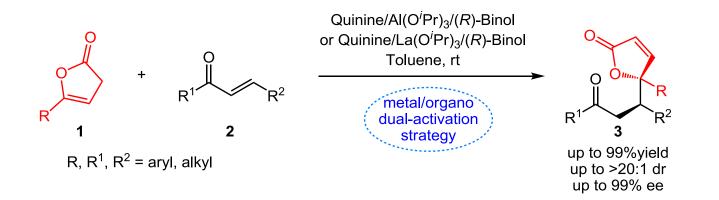
3l: \mathbb{R}^3 = Ph, 82% yield, 97% ee **3m**: \mathbb{R}^3 = *p*-Cl-C₆H₄, 75% yield, 96% ee **3n**: \mathbb{R}^3 = *p*-CF₃-C₆H₄, 83% yield, 97% ee **3o**: \mathbb{R}^3 = *p*-Me-C₆H₄, 78% yield, 93% ee **3p**: \mathbb{R}^3 = *m*-Me-C₆H₄,75% yield, 93% ee

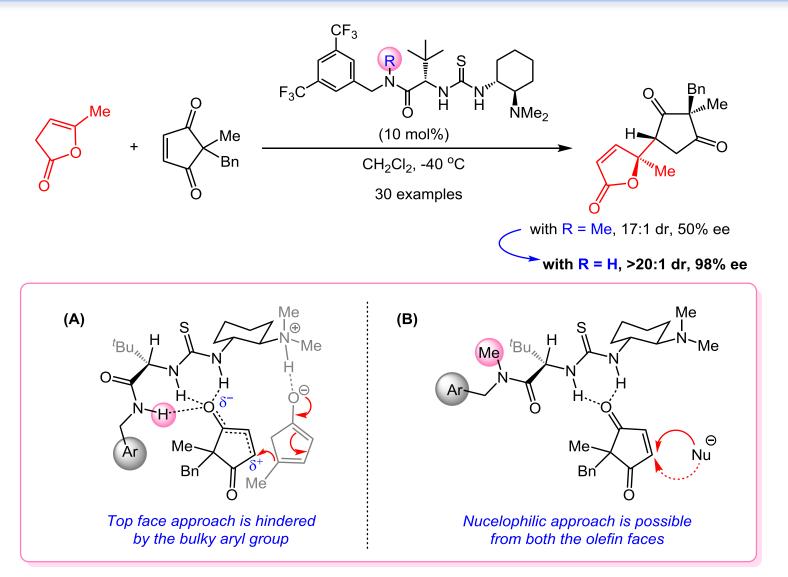

3q: $R^3 = Ph$, 81% yield, 97% ee **3r**: $R^3 = p$ -Br-C₆H₄, 86% yield, 95% ee **3s**: $R^3 = p$ -Cl-C₆H₄, 84% yield, 96% ee **3t**: $R^3 = p$ -Me-C₆H₄, 80% yield, 94% ee **3u**: $R^3 = m$ -Me-C₆H₄, 76% yield, 96% ee


Asymmetric Vinylogous Michael Addition of Furanones with α , β -Unsaturated Ketones



Jiang, Z. et al. Angew. Chem. Int. Ed. 2012, 51, 10069.

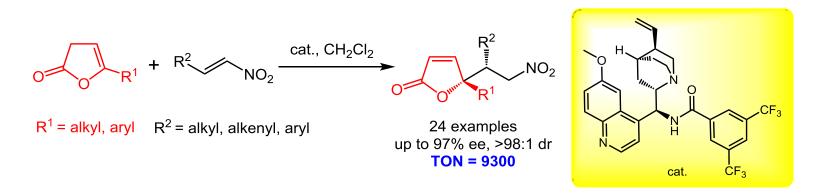

Asymmetric Vinylogous Michael Addition of Furanones with α , β -Unsaturated Ketones



Asymmetric Vinylogous Michael Addition of Furanones with α , β -Unsaturated Ketones

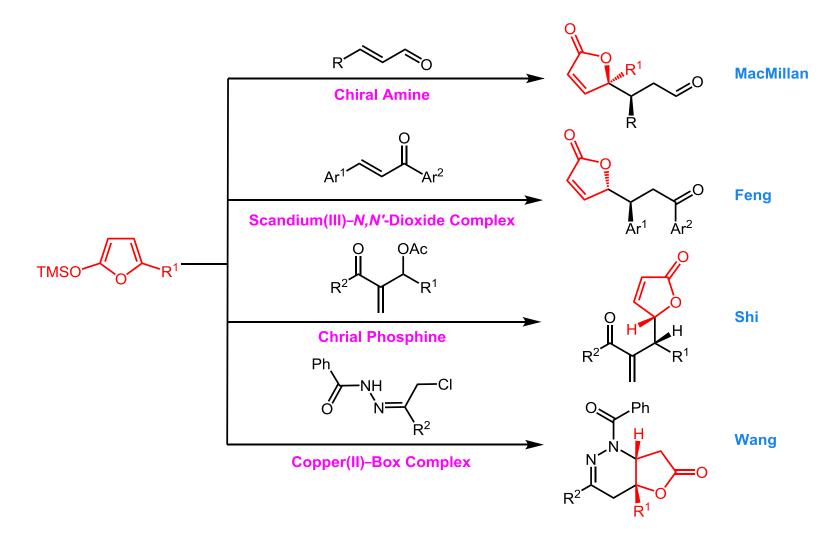
Wang, R. et al. Chem.-Eur. J. 2013, 19, 4691.

Asymmetric Vinylogous Michael Addition of Furanones with Cyclopentenediones

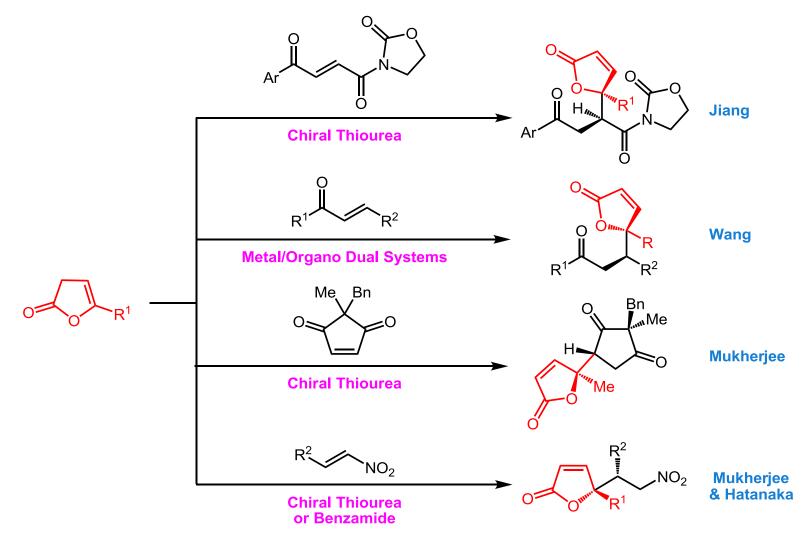


Mukherjee, S. et al. Chem. Sci. 2014, 5, 1627.

Asymmetric Vinylogous Michael Addition of Furanones with Nitroalkenes


Mukherjee, S. et al. Chem. Commun. 2012, 48, 5193.

Hatanaka, Y. et al. Org. Lett. 2015, 17, 3026.


Summary

Asymmetric Vinylogous Mukaiyama Michael Addition of 2-Silyloxyfurans

Summary

Asymmetric Vinylogous Michael Addition of Furanones

Development of a practical methodology for the construction of enantioenriched y-butyrolactones and y-butenolides represents an important research topic in organic synthesis because of their prevalence as the core structures in a number of biologically interesting natural and synthetic compounds. In this context, elaboration of 2-silyloxyfurans as the readily accessible nucleophilic synthons of the y-anion of 2(5H)-furanone by means of vinylogous Mukaiyama-aldol, Mukaiyama-Michael, and Mukaiyama-Mannichtype additions has been, thus far, the well-established method for electrophilic attack at the C5 position. Considering that an electron-deficient unsaturated lactone moiety in butenolide is a potential Michael acceptor easily trapped by a built-in nucleophile group, we envision that 2-silyloxyfurans could be utilized as dipole-type synthons in the cascade reaction by sequentially reacting as a nucleophile and an electrophile, giving rise to fused butyrolactone.

This cascade approach involves the nucleophilicity on C5 of the 2silyloxyfuran and the electrophilicity of C4 of the formed butenolide. Surprisingly, however, this kind of asymmetric cascade annulation with 2-silyloxyfurans has received much less attention despite numerous examples of butyrolactone stereogenicity found in natural alkaloids and biologically active compounds. In conclusion, we have successfully developed an unprecedented Cu(II)catalyzed asymmetric cascade vinylogous Mukaiyama 1,6-Michael/Michael addition of 2-silyloxyfurans with in situ formed azoalkenes. The key feature of the current methodology is that furan-based dienoxysilanes could be utilized as efficient dipole-type synthons. This cascade annulation process provides a straightforward approach to a variety of biologically important and structurally complicated fused butyrolactones in good yield with high regioselectivity and excellent stereoselectivity. The studies of carbon isotope effects measured by ¹³C NMR indicated a stepwise mechanism for this annulation. Further efforts are currently underway to understand the origin of stereoselectivity control and application of this methodology in organic synthesis.