Catalytic Enantioselective Synthesis of Functionalized Tropanes

Reporter: Jie Wang Checker: Shubo Hu Date: 2016-11-07

Xu, J.-H., Zheng, S.-C., Zhang, J.-W. Liu, X.-Y., Tan, B. *Angew. Chem. Int. Ed.* **2016**, *55*, 11834. 2

1 Introduction

Copper-catalyzed [3+2] cycloaddition reaction

3 NHC-catalyzed dearomatization reaction

4 Summary

Introduction

Carroll, F. I. *et al. J. Med. Chem.* **2004**, *47*, 6401. Haycock-Lewandowski *et al. Org. Process Res. Dev.* **2008**, *12*,1094.

Ma, S. et al. Org. Lett. 2011, 13, 466.

Introduction

Wolfe, J. P. et al. Org. Lett. 2011, 13, 2962.

The strategies

The retrosynthetic analysis:

Waldmann, H. *et al. Angew. Chem. Int. Ed.* **2013**, *52*, 12892. Tan, B. *et al. Angew. Chem. Int. Ed.* **2016**, *55*, 11834.

[3+2] cycloaddition reaction

Waldmann, H. et al. Angew. Chem. Int. Ed. 2013, 52, 12892.

Ligand effect

4

69

4d

86

>20:1

Solvent and metal effect

entry	solvent	[Cu]	yield (%)	dr	ee (%)
1	CH ₂ Cl ₂	Cu(MeCN) ₄ PF ₆	69	>20:1	86
2	PhMe	Cu(MeCN) ₄ PF ₆	52	>20:1	55
3	Et ₂ O	Cu(MeCN) ₄ PF ₆	43	>20:1	69
4	CH ₃ CN	Cu(MeCN) ₄ PF ₆	79	>20:1	70
5	CH_2CI_2	Cu(MeCN) ₄ BF ₄	64	>20:1	74
6	CH_2CI_2	Cu(MeCN) ₄ ClO ₄	67	>20:1	75
7	CH_2CI_2	CuOTf-PhMe	51	>20:1	68

Base effect

entry	base	T (°C)	yield (%)	dr	ee (%)
1	Et ₃ N	0	69	>20:1	86
2	DIPEA	0	21	>20:1	33
3	DBU	0	77	>20:1	87
4	KO ^t Bu	0	26	>20:1	77
5	DBU	-20	87	>20:1	86
6	DBU	-75	77	>20:1	86

Substrate Scope

Proposed mechanism

Dearomatization reaction

Tan, B. et al. Angew. Chem. Int. Ed. 2016, 55, 11834.

NHC organocatalyst screening

C6

6

42

>20:1

90

entry	Base	yield (%)	dr	ee%
1	NaOAc	10	>20:1	53
2	K_2CO_3	21	>20:1	79
3	Et ₃ N	36	>20:1	75
4	DIPEA	35	>20:1	79
5	DBU	Trace	>20:1	Not determined
6	DABCO	Trace	>20:1	Not determined
7	KOAc	42	>20:1	90

Temperature and solvent effect

entry	T (°C)	solvent	yield (%)	dr	ee %
1	rt	DCM	42	>20:1	90
2	0	DCM	49	>20:1	92
3	-20	DCM	57	>20:1	93
4	-20	EtOH	58	>20:1	89
5	-20	toluene	30	>20:1	82
6	-20	CHCl ₃	50	>20:1	85

KOAc and EtOH effect

entry	KOAc (eq.)	EtOH (µL)	yield (%)	dr	ee%
1	2.0	1.0 (eq.)	22	>20:1	93
2	2.0	5.0 (eq.)	41	>20:1	93
3	2.0	100	57	>20:1	93
4	2.0	200	57	>20:1	93
5	0.2	100	11	>20:1	70
6	1.0	100	39	>20:1	89
7	5.0	100	62	>20:1	93
8	10.0	100	66	>20:1	93

Substrate Scope

entry	Ar	yield (%)	dr	ee %
1	C_6H_5	66	>20:1	93
2	$4-\text{MeC}_6\text{H}_4$	70	>20:1	96
3	$4-MeOC_6H_4$	64	>20:1	96
4	$2-MeOC_6H_4$	65	>20:1	91
5	$4-\text{Me}_2\text{NC}_6\text{H}_4$	64	>20:1	>99
6	$4-N_3C_6H_4$	62	>20:1	84
7	$4-FC_6H_4$	50	>20:1	84
8	2-Furyl	50	>20:1	96

Substrate Scope

Multicomponent reaction

Further transformation

Mechanism study

Proposed mechanism

Summary

Waldmann, H. et al. Angew. Chem. Int. Ed. 2013, 52, 12892.

Tan, B. et al. Angew. Chem. Int. Ed. 2016, 55, 11834.

The first paragraph

The tropane (8-azabicyclo[3.2.1]octane) skeleton is widespread in both natural products and synthetic compounds with a wide range of biological activity. Many tropane derivatives play a key role in a large number of neurological and psychiatric diseases, such as Parkinsons disease, depression, and panic disorder. Maraviroc, with a tropane structural core, has been used in the treatment of HIV infection and deserves considerable attention. Benzotropane, containing a phenyl ring in the tropane moiety, also occurs in numerous lead compounds and pharmaceuticals for the treatment of type 2 diabetes and antitumor drug candidates. The medicinal relevance of tropane derivatives has stimulated considerable interest among synthetic chemists, and several catalytic methods have been developed for the construction of optically pure tropane frameworks.

In summary, we have successfully developed the first chiral-NHC-catalyzed asymmetric dearomatizing double Mannich reaction of isoquinolines to enable the straightforward and efficient synthesis of biologically important tropanes bearing four contiguous stereogenic centers with high levels of diastereo- and enantioselectivity. A unique feature of this strategy is the use of readily available isoquinolines to provide two reactive sites for dearomatization reactions. This highly convergent and functional-grouptolerant strategy enables the rapid construction of complex compounds from simple, readily available starting materials.

M = Os, Ru, Rh, Ir

金属杂戊搭炔 芳香性

卡拜碳键角129.5°

Xia, H. et al. Nat. Chem. 2013, 5, 698.

Xia, H. et al. Nat. Chem. 2013, 5, 698.

Xia, H. et al. Sci. Adv. 2016; 2:e1601031.

Huang, Z. et al. Sci. Adv. 2016; 2:e1501591.

