Literature Report

The Design of Ligands for Ni-catalysed Coupling Reaction

Reporter: Chang-Bin Yu Checker: Mu-Wang Chen

January 2, 2018

Wu, K.; Doyle, A. G. Nat. Chem. 2017, 9, 779

CV of Prof. Abigail G. Doyle

Prof. A. G. Doyle

1998-2002 A.B. and A.M. (Harvard University)
2002-2003 MS, Prof. Justin Du Bois (Stanford University)
2003-2008 Ph.D Prof. Eric Jacobsen (Harvard University)
2008-2013 Assistant Professor (Princeton University)
2013- now Associate Professor (Princeton University)

Research Fields:1. Nucleophilic Fluorination2. Ni-catalysed Cross Coupling

2

Introduction

Ni-catalysed C(sp²)–N Cross-coupling

Ni-catalysed Suzuki Coupling of Benzylic Acetals

Summary

Introduction

Nickel

1751: Nickel was isolated firstly from Kupfernickel

1775: Purified nickel obtained from Kupfernickel

1890: Mond observed and synthesized Ni(CO)₄

1900: Sabatier performed hydrogenation of ethylene with nickel

1970: Application in reactions: nucleophilic allylation oligomerization, cycloisomerization and reductive coupling

Tasker, S. Z.; Standley, E. A. et al. Nature 2014, 509, 299

Introduction

Periodic Table

	VIII		IB	Pd
4	27 Co	28 Ni	29 Cu	FU
5	45 Rh	46 Pd	47 Ag	
6	77 Ir	78 Pt	79 Au	Ni

Larger atomic radius More electronegative Softer Facile reductive elimination Facile β-hydride elimination

Smaller atomic radius Less electronegative Harder Facile oxidative addition Facile migratory insertion Radical pathways more accessible

Tasker, S. Z.; Standley, E. A. et al. Nature 2014, 509, 299

Ni-catalysed Cross-coupling of Epoxides

Nielsen, D. K.; Doyle, A. G. et al. Angew. Chem. Int. Ed. 2011, 50, 6056

Proposed Catalytic Cycle

Nielsen, D. K.; Doyle, A. G. et al. Angew. Chem. Int. Ed. 2011, 50, 6056

Possible Catalytic Cycle

Nielsen, D. K.; Doyle, A. G. et al. Angew. Chem. Int. Ed. 2011, 50, 6056

Ni-catalysed Coupling of Chromene Acetals

Graham, T. J. A.; Doyle, A. G. et al. Org. Lett. 2012, 14, 1616

Ni-catalysed Activation of Amide C–N Bond

Hie, L.; Houk, K. N.; Garg, N. K. et al. Nature 2015, 524, 79

Proposed Catalytic Cycle

Hie, L.; Houk, K. N.; Garg, N. K. et al. Nature 2015, 524, 79

Ni-catalysed Amine Arylations

Buchwald-Hartwig Amination (BHA):

Lavoie, C. M.; MacQueen, P. M. et al. Nat. Commun. 2016, 7, 11073

Ni-catalysed Amine Arylations

The Synthesis of Ligands

X = Br, 81%

X = Cl, 76%

X = Cl, 68%

X = CI, 82%

 $\mathbf{NH}_{\mathbf{2}}$

X = CI, 68%

X = CI, 90%

X = CI, 87%

X = OTf, 58%

X = CI, 70%

н

X = CI, 94%

н

X = OTs, 60%

Design of Ligands for Ni-catalysed Reaction

Wu, K.; Doyle, A. G. Nat. Chem. 2017, 9, 779

Ligand Design for Ni-catalysed Reactions

Cone Angle (θ)

 $%V_{bur} = \%$ Volume of Sphere of Radius *r* Occupied by Ligand; any Group beyond *r* is not Captured

 θ = Angle Swept by Cone that Encloses all Ligand Groups

Remote Steric Hindrance = High θ and Low %V_{bur}

Wu, K.; Doyle, A. G. Nat. Chem. 2017, 9, 779

Ligand Evaluation

Classical Phosphine and Carbene Ligands :

Ligand Evaluation

Conclusion: 1. Cyp > Cy > ^tBu; 2. *meta* > *ortho* in aromatic ring

Ligand Evaluation

86% yield

73% yield

70% yield

□ Nickel Catalysed C(sp²)–N Cross-Coupling:

Sterically Demanding and Electron-poor Bisphosphine PAd-DalPhos

Lavoie, C. M.; MacQueen, P. M. et al. Nat. Commun. 2016, 7, 11073

□ Nickel Catalysed Suzuki Coupling of Benzylic Acetals:

Wu, K.; Doyle, A. G. Nat. Chem. 2017, 9, 779

Perspectives

Ligand Design:

- **Rigid Skeleton**
- Electronic Effect (Electron-Donating or Withdrawing)
- **Steric Effect**
- **Coordination Ability with Different Metals**
- **Cone Angle and Dihedral Angle**

Over the past 50 years, the field of nickel-catalysed cross-coupling has witnessed tremendous activity, but minimal effort has been dedicated to the identification of new ligand. Furthermore, phosphines developed for Pd catalysis have generally proven ineffective for nickel. According to the example set by Pd, the design of new ligands for Ni should facilitate the refinement of existing methods and the identification of new chemical transformations. Herein, we report the development of a new class of phosphines and demonstrate that these ligands facilitate a Ni-catalysed C^{sp3} Suzuki coupling reaction that failed with known ligand architectures for Ni and Pd.

In conclusion, we have developed a novel class of aryl alkylphosphines that confer high activity upon nickel catalysts for the Suzuki coupling. Parameterization and modelling studies reveal that the effectiveness of these ligands is a function of remote steric hindrance, a structural concept relatively unexplored in ligand design. We reveal a divergence between the cone angle and volume parameters. Whereas %V_{bur} only describes steric hindrance in the metal's first coordination sphere, cone angle captures it beyond the immediate proximity of the metal. We show that the two can be used in conjunction to develop a quantitative model for predicting ligand reactivity. We believe this new ligand architecture and the concept of remote steric hindrance will lead to significant advances in both Ni catalysis and ligand design.

Mr. Mu-Wang Chen Prof. Zhi-Shi Ye Mrs. Lei Sun Prof. Lei Shi

Thanks for your attention!