Catalytic enantioselective synthesis of indanes by a cation-directed 5-endo-trig cyclization

Reporter: Ji Zhou Checker: Bo Wu Date: 2015/04/07

Robert S. Paton. *et al. Nature Chem.* **2015**, *7*, 171-178.

Robert S. Paton University of Oxford

Contents

Introduction

- Intramolecular 5-endo-trig cyclization
- Intramolecular 5-exo-trig Michael addition

Summary

Introduction

В

Introduction

Baldwin's rules

The abbreviations to describe the ring forming processes were established by Baldwin in 1976.

- •The prefixed number specifies the size of the generated ring.
- •The words *exo* or *endo* are used to picture if the breaking bond is *exo* or *endo*-cyclic to the smallest ring formed.

•The suffixes *tet*, *trig* or *dig* indicate the geometry of the carbon atom undergoing the ring closure reaction [*tet* = tetragonal (sp³), *trig* = trigonal (sp²), *dig* = digonal (sp)]

Baldwin, J. E. et al. J. Chem. Soc. Chem. Commun. 1976, 734.

Introduction

5-Endo/Exo-Trig Reactions

Baldwin, J. E. et al. J. Chem. Soc. Chem. Commun. 1976, 736.

Paton, R. S. et al. Nature Chem. 2015, 7, 171.

CO ₂	2 [′] Pr		CO2 ⁱ Pr		CO2 ⁱ Pr
	CO₂ ⁱ Pr <u>Cataly</u> ∽ Solver	rst, base	CO ₂ ⁱ Pr		CO ₂ ⁱ Pr
	² Ph	CO ₂ ⁱ Pr anti		ČO ₂ ⁱ Pr <i>syn</i>	
Entry	Catalyst (%)	Base	Solvent	d.r.	e.r.
1	7	K ₂ CO ₃ (aq.)	Toluene		
2	7	Cs_2CO_3 (s)	Toluene		
3	7	CsOH·H ₂ O (s)	Toluene	3:1	64:36
4	8	CsOH·H ₂ O (s)	Toluene	2:1	55:45
5	9	CsOH·H ₂ O (s)	Toluene	2:1	50:50
6	10	KOH (aq.)		1:3	89:11
7	10	KOH (aq.)	ⁱ Pr ₂ O	1:1	90:10
8	10	CsOH·H ₂ O (s)	Toluene	3:1	80:20
9	12	KOH (aq.)	Toluene	1:2	96:4
10	12	KOH (aq.)	Toluene/Hexane	1:3	92:8

(S)**-11**

(R,R)-**12**

 $Ar^4 = 3,4,5-F_3-C_6H_2$

Mechanistic extremes

	COPh CHO 1	$R^{1} \xrightarrow{N}_{HX} R^{2}$ $EtO_{2}C \xrightarrow{H}_{HX} CO_{2}$ $H \xrightarrow{N}_{HX} CO_{2}$			9₂Et ►	COPh COPh 2 (d.r. > 15 : 1)	
Catalyst	R ¹	R ²	R ³	Х	time [h]	yield [%]	ee [%]
3a	Н	^t Bu	Н	CF_3CO_2	2	82	93
3b	Н	<i>t</i> Bu	Н	CI	12	90	95
3c	Н	2,6-Ph ₂ Ph	Н	CI	12	75	16
3d	Bn	<i>t</i> Bu	Н	CI	3	98	96
3e	<i>p</i> -BnOBn	<i>t</i> Bu	Н	CI	6	91	95
3f	<i>p-⁺</i> BuOBn	<i>t</i> Bu	Н	CI	6	90	95
3g	Bn	Me	Me	CI	24	<10	

List, B. et al. J. Am. Chem. Soc. 2005, 127, 15036.

Smith, A. D. et al. J. Am. Chem. Soc. 2011, 133, 2714.

Proposed catalytic pathways

Entry	Catalyst	Conditions ^[a]	yield ^[b]	ee[%] ^[c]
1	Α	DBU, THF	6	-
2	Α	KN(SiMe ₃) ₂ ,THF ^[d]	11	-
3	Α	[/] Pr ₂ EtN, THF, 45 °C	50	-
4	В	ⁱ Pr ₂ EtN, toluene/THF ^[e]	61	-
5	С	[/] Pr ₂ EtN, toluene/THF ^[e,f]	61	93
6	С	Et ₃ N (0.1 M), toluene/THF ^[e]	62	93
7	С	[/] Pr ₂ EtN (0.1 M), CH ₂ Cl ₂ , -20 °C	49	93
8	D	ⁱ Pr ₂ EtN (0.1 M), toluene/THF ^[e]	53	99

Scheidt, K. A. et al. Angew. Chem. Int. Ed. 2007, 46, 3107.

Entry	Catalyst	Conditions ^[a]	yield ^[b]	ee[%] ^[c]
9	D	ⁱ Pr ₂ EtN (0.05 M), toluene/THF ^[e]	66	99
10	D	[/] Pr ₂ EtN (0.05 M), CH ₂ Cl ₂	68	99
11	D [a]	ⁱ Pr ₂ EtN (0.05 M), CH ₂ Cl ₂	68	99

[a] Base (20 mol%), **7** (0.2 M) at 23 °C unless otherwise noted. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. [b] Yield of isolated product. [c] Determined by HPLC (Chiracel AD-H). Absolute and relative configuration of **8** assigned by X-ray crystallography. [d] Carbene generated prior to addition of substrate. [e] 10:1 toluene/THF. [f] Base (1.2 equiv). [g] D (10 mol%).

Proposed catalytic pathway

You, S-L. et al. Chem. Commun. 2009, 5823.

Summary

The indane architecture is a constituent of many natural product families and a key component of clinically relevant entities and biologically active molecules, yet relatively few catalytic enantioselective procedures for its synthesis have been disclosed. Previous synthetic strategies have typically relied on intramolecular 5-exo-trig Michael additions to generate these carbocycles utilizing chiral imidazolidinones, cyclic isothioureas, Nheterocyclic carbenes or proline derivatives. So far, the related 5-endo-trig disconnection has not been explored, probably due to the fact it is considered to be a stereoelectronically disfavoured cyclization as described in Baldwin's rules. From a mechanistic perspective, this transformation can also be considered as an anionic 6π electrocyclization related to the classical pentadienyl anion cyclization.

The rules proposed by Baldwin allow the prediction of the relative facility of ringclosing reactions under kinetic control based upon the ability of the tethered nucleophile and electrophile to achieve the correct trajectory for bond formation. This is a consequence of the geometric constraints of the tethering atoms and the requirement for attack on the $\pi^*_{C=Y}$ at the Bürgi–Dunitz angle. We reasoned that a catalytic enantioselective route to densely functionalized indanes could be achieved using a chiral counterion to control the π -face selectivity in a 5-endotrig cyclization reaction. We rationalized that key to achieving this would be the installation of an electron-withdrawing group on the trigonal carbon to stabilize developing charge in the transition state resulting from the ring-forming step. Quenching of this anion with an appropriate electrophile would also give access to all-carbon quaternary stereocentres. Our previous investigations into the counterion directed cyclization of delocalized anions to form indolines and indolenines have demonstrated that analogous transformations can proceed with high enantioselectivity.

A chiral cation is able to facilitate a highly enantio- and diastereoselective 5-*endo-trig* Michael reaction to generate complex indanes bearing all-carbon quaternary stereocentres. The ease with which this kinetically controlled but formally disfavoured reaction occurs led us to apply quantum calculations to probe the mechanism. This demonstrated that geometric/stereoelectronic constraints may not be decisive in the observed outcome of irreversible ringclosing reactions and we anticipate that further study of other kinetically controlled 5-*endo-trig* processes will provide new insight into the factors that control ring-closing reactions.