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ABSTRACT: The copper-catalyzed reductive coupling of
two different carbonyl compounds has been achieved. The
reaction of aromatic aldehydes and arylketones with a
silylboronate in the presence of a catalytic amount of a
CuCl−N-heterocyclic carbene (NHC) complex and a
stoichiometric amount of alkoxide base yielded cross-coupled
1,2-diol derivatives. A reaction pathway is proposed that involves the catalytic formation of a nucleophilic α-
silyloxybenzylcopper(I) species from the aromatic aldehyde and its subsequent coupling with the arylketone. This process
was amenable to asymmetric catalysis. This copper catalyst system also enabled the reductive coupling between aromatic
aldehydes and imines.

1. INTRODUCTION

1,2-Diols are common scaffolds in many pharmaceuticals,
agrochemicals, and natural products. In addition, they are
valuable building blocks in organic synthesis. The development
of facile and efficient methods for the synthesis of 1,2-diols is
thus important. One of the most promising methods is the
pinacol-coupling reaction, which is a direct conversion of
readily available carbonyl compounds to 1,2-diols.1 Conven-
tionally, the pinacol coupling reaction entails the single
electron reduction of carbonyl moieties to generate the
corresponding ketyl radical intermediates, which then undergo
carbon−carbon bond formation between the two radical
species (Figure 1A, right). The reaction has been extensively
studied using low-valent metals in this single-electron transfer
manifold. Although tremendous advances in the homopinacol
coupling or intramolecular cross-pinacol coupling have been
realized, the intermolecular cross-pinacol coupling that can
produce a single cross-coupled 1,2-diol (AB) selectively from
among the three possible 1,2-diols (AB, AA, and BB) that
could be formed from two different carbonyl compounds (A
and B) still remains a challenge (Figure 1B). The nature of the
mechanism can render it difficult to discriminate between two
different carbonyls in the reaction. Strategies to address the
issue of chemoselective control (homo- versus cross-coupling)
in the intermolecular cross-pinacol coupling include employing
one coupling partner in large quantities or using highly
functionalized carbonyl compounds.2

Recently, we demonstrated that a nucleophilic α-
silyloxyalkylcopper(I) species can be generated catalytically
from aldehydes through the addition of a silylcopper(I) species
followed by [1,2]-Brook rearrangement3 and then successfully
intercepted with aryl electrophiles under palladium catalysis.4

This finding of an umpolung strategy prompted us to consider
whether the α-alkoxyalkylcopper(I) species could intercept

another carbonyl compound, thus providing a 1,2-diol product
(Figure 1C). Here, we report a copper-catalyzed reductive
coupling of two simple carbonyls, namely, an aldehyde and a
ketone, producing an unsymmetrical 1,2-diol derivative. This
copper catalysis provides an unprecedented strategy for the
organic synthesis of 1,2-diols (Figure 1A, left).5
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Figure 1. Cross-pinacol coupling.
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2. RESULTS AND DISCUSSIONS

2.1. Discovery of the Reaction and Screening of
Conditions. The reaction of benzaldehyde 1a (0.3 mmol) and
benzophenone 2a (0.2 mmol) with (dimethylphenylsilyl)-
boronic acid pinacol ester [PhMe2SiB(pin)] (0.3 mmol)
occurred in the presence of catalytic amounts of CuCl (5
mol %) and 1,3-bis(2,4,6-trimethylphenyl)imidazolium chlor-
ide IMes·HCl (5 mol %) and a stoichiometric amount of
NaOtBu (0.21 mmol) in THF (1 mL) at 80 °C, followed by a
hydrolytic workup, to afford the corresponding 1,2-diol 3aa
(Scheme 1). The yield of the purified 3aa was 70%.

The effects of different ligands are summarized in Table 1. In
the earlier stage of the investigation, we used 10 mol % of the
copper complex for the reaction between 1a and 2a. Our
ligand screening identified IMes to be the best (entry 1). The
NMR analysis of the crude product confirmed no occurrence

of homocoupling.6 Even without the ligand, the reductive
coupling proceeded in 43% yield under essentially the same
conditions (entry 2). A ring-saturated SIMes performed with a
similar level of yield to that of IMes (entry 3). The use of
sterically demanding SIPr or IPr gave a moderate yield (entries
4 and 5).4a Bisphosphine ligands such as DPPE, DPPB, or
BINAP were less effective (entries 6−8). In the case of DPPE
or BINAP, a small amount of homocoupling product 4a from
aldehyde 1a was observed (entries 6 and 8). The mono-
phosphine PPh3 inhibited the reaction (entry 9). No reaction
took place with a nitrogen-based ligand (entry 10).
The nature of the base was also important (Table 1). The

use of LiOtBu or KOtBu instead of NaOtBu was less effective,
and a small amount of homocoupled product 4a was formed
(entries 11 and 12). A smaller and weaker alkoxide base
NaOMe induced no reaction (entry 13). The use of only 0.2
equiv of NaOtBu (relative to 2a) under otherwise identical
conditions resulted in no reaction (entry 14) (vide inf ra for
mechanistic considerations for the reaction pathway).

2.2. Substrate Scope. We next explored the scope of the
aldehydes in the copper-catalyzed reductive coupling using
benzophenone (2a) (Table 2). The reaction of p-tolualdehyde
or p-tert-butylbenzaldehyde gave the corresponding 1,2-diol
products (3ba and 3ca). A sterically hindered aromatic
aldehyde such as o-tolualdehyde underwent the coupling
reaction (3da). 2-Naphthaldehyde served as a substrate (3ea).
Functional groups such as methoxy, benzyloxy, trifluorome-
thoxy, methylthio, bromo, chloro, and fluoro substituents were
tolerated at the meta- or para-positions of the aromatic ring of
the aldehyde (3fa−3ma). Heteroaromatic aldehydes were
compatible with the reaction. Specifically, heteroaromatic rings
such as furan and thiophene were tolerated regardless of the
substituent pattern (3na−3pa). Electron-deficient heteroar-
omatic quinoline underwent the reaction, although the yield
was moderate (3qa). Aliphatic aldehydes did not participate in
the reaction (data not shown). Thus, the reaction of aliphatic
aldehydes gave significant amounts of the corresponding α-
silyl-substituted alcohol and acylsilane. This result suggested
the Brook rearrangement in aliphatic aldehydes was slower
than that in aromatic aldehydes.
Various diarylketone derivatives were examined (Table 2).

The benzophenone derivatives bearing p-tolyl or biphenyl
groups served as substrates (3ab and 3ac). A π-extended
aromatic ketone such as 2-naphthylphenyl ketone participated
in the reaction (3ad). Fluoro, methoxy, and trifluoromethoxy
groups were tolerated at the meta- or para-positions of the
benzene ring of the benzophenone (3ae−3ag). A hetero-
aromatic ring such as thiophene could be introduced to the
substrate (3ah).
The copper catalyst system was not limited to the coupling

reaction with diarylketones but could also be applied to alkyl
aryl ketones (Table 2). SIMes was better than IMes as a ligand
in terms of the product yield. For example, the simplest
substrate acetophenone reacted with benzaldehyde 1a, giving
the corresponding 1,2-diol (3ai) in 70% yield. More sterically
demanding alkyl substituents such as ethyl, isobutyl, or
cyclohexyl groups were tolerated in the alkyl aryl ketone
(3aj−3al). Alkene or ester at the terminus of the aliphatic
chain was tolerated in this reaction (3am and 3an). 2-
Acetonaphthone underwent the reaction (3ao). Notably, 2,2,2-
trifluoroacetophenone was utilized for this reductive coupling
to furnish the corresponding 1,2-diol (3ap).

Scheme 1. Copper-Catalyzed Reductive Coupling between
1a and 2a

Table 1. Screening of Reaction Conditionsa

entry change from standard conditions
yield (%) of

3aa
yield (%)
of 4a

1 none 85 0
2 without IMes·HCl 43 0
3 SIMes·HCl instead of IMes·HCl 79 0
4 SIPr·HCl instead of IMes·HCl 41 0
5 IPr·HCl instead of IMes·HCl 22 0
6 DPPE instead of IMes·HCl 37 8
7 DPPB instead of IMes·HCl 69 0
8 rac-BINAP instead of IMes·HCl 33 3
9 PPh3 instead of IMes·HCl 4 12
10 1,10-Phen instead of IMes·HCl 0 0
11 LiOtBu instead of NaOtBu 30 13
12 KOtBu instead of NaOtBu 69 12
13 NaOMe instead of NaOtBu 0 0
14 NaOtBu 20 mol % instead of 1.1 equiv

(relative to 2a)
0 0

aReaction was carried out with 1a (0.4 mmol), 2a (0.2 mmol),
PhMe2SiBpin (0.4 mmol), CuCl (10 mol %), ligand (10 mol %), and
base (0.22 mmol) in THF (1.0 mL) at 80 °C for 6 h. SIMes·HCl, 1,3-
bis(2,4,6-trimethylphenyl) imidazolinium chloride. SIPr·HCl, 1,3-
bis(2,6-diisopropylphenyl)imidazolinium chloride. IPr·HCl, 1,3-bis-
(2,6-diisopropylphenyl)imidazolium chloride. DPPE, 1,2-bis-
(diphenylphosphino)ethane. DPPB, 1,4-bis(diphenylphosphino)-
butane. BINAP, 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl. 1,10-
Phen, 1,10-phenanthroline.
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2.3. Mechanistic Considerations for the Reaction
Pathway. Competition experiment on the copper-catalyzed
carbonyl silylation using tert-butyl alcohol as a proton source
was conducted. The reaction with benzaldehyde 1a and
benzophenone 2a gave benzyl silyl ether 1a′ along with full
recovery of 2a (Figure 2A). The result suggested the copper
catalysis is initiated by chemoselective silylation to aldehyde.

The reaction in the presence of only 20 mol % of NaOtBu
(relative to 2a), which should be consumed to form the
alkoxycopper(I)−NHC complex (10 mol %), under otherwise
identical conditions resulted in no reaction (see Table 1, entry
14). The active organocopper intermediate of the reductive
coupling reaction is likely in the form of a monoorganoalkox-
ycuprate rather than a neutral organocopper(I) species. To test
this assumption, we investigated the NaOtBu loading on the
product yields of the reaction of IMes-ligated α-
silyloxybenzylcopper(I) complex 5, which was prepared in
situ from p-tolualdehyde (1b), (IMes)CuCl, PhMe2SiBpin, and
NaOtBu, with benzophenone 2a (Figure 2B).7 The reaction
without an additional alkoxide base resulted in no product

Table 2. Substrate Scopea

aReactions were carried out with 1 (0.3 mmol), 2 (0.2 mmol),
PhMe2SiBpin (0.3 mmol), CuCl (5 mol %), IMes·HCl (5 mol %),
and NaOtBu (0.21 mmol) in THF (1.0 mL) at 80 °C for 6 h. b1 (0.4
mmol), PhMe2SiBpin (0.4 mmol), CuCl (10 mol %), IMes·HCl (10
mol %), and NaOtBu (0.22 mmol) were used. cDiastereomeric ratio
(1:1−1.8:1). dSIMes·HCl (5 mol %) was used as a ligand.

Figure 2. Mechanistic considerations.
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formation. The product yield was markedly improved as the
NaOtBu/5 ratio was increased in the range from 1 to 10.
These results are in accord with the above assumption.8

On the basis of the information obtained by the reactions in
Figures 2A and 2B and our scenario (Figure 1C), a reaction
mechanism for the copper-catalyzed reductive coupling, in
which a copper catalyst discriminates between these two
carbonyls, namely, aromatic aldehyde 1 and arylketone 2, is
outlined in Figure 2C. Initially, the reaction of CuCl, IMes·
HCl, and NaOtBu forms a t-butoxycopper−NHC complex
(A). B/Cu transmetalation between A and a silylboronate
occurs to form the silylcopper(I) complex (B) and t-BuOBpin.
Next, the selective addition of silylcopper(I) (B) across the
CO bond of aldehyde 19 followed by [1,2]-Brook
rearrangement from the resulting α-silyl-substituted copper(I)
alkoxide (C) occurs to form an α-silyloxybenzylcopper(I)
species (D).7 Next, the sodium alkoxide base reacts with the
copper complex (D) to form the sodium alkoxo(α-
silyloxybenzyl)cuprate(I) species (E). Finally, the heterocup-
rate (E) reacts with arylketone 2 to furnish the cross-coupled
product and regenerate the t-butoxycopper(I) complex (A) for
the next catalytic cycle.
For the reaction pathway of the heterocuprate (E) with

arylketone 2, two types of mechanisms are conceivable. One
involves a nucleophilic addition mechanism, and the other is
an SET (single electron transfer) mechanism.10,11 We
conducted ketyl radical probe experiments. The reaction
using o-iodobenzophenone (2q) gave 1,3-diphenylisobenzofur-
an 6 in 27% yield along with a dehalogenated compound 2a in
8% yield (Figure 2D and see the Supporting Information).12

The corresponding 1,2-diol was not observed. Additionally, the
reaction of 1a using iodobenzene instead of 2q under
otherwise identical conditions was examined, and the coupling
product, diphenylmethanol, was not detected (data not
shown). Thus, the carbon−carbon bond formation step in
the copper-catalyzed reaction between 1a and 2q was initiated
by the generation of a ketyl radical not an aryl radical (Figure
2E). On the other hand, the reaction with cyclopropylphe-
nylketone (2r) gave the corresponding 1,2-diol 3ar, and the
ring opening of cyclopropyl group was not observed (Figure
2F).13,14 These results indicated an interesting mechanistic
difference between the two ketone substrates, diarylketone and
alkyl aryl ketone. The reaction mechanism (nucleophilic
addition or SET) would rely on the nature of ketone
substrates.
2.4. Enantioselective Reductive Coupling. We exam-

ined the catalytic enantioselective reductive coupling (Table
3). When a new ring-saturated C2-symmetric carbene (S,S)-L1
was used as a ligand on copper, the reductive coupling of
various aromatic aldehydes using benzophenone (2a)
proceeded with high enantioselectivities (3aa, 3da, 3fa, 3ia,
and 3ra). Notably, the asymmetric intermolecular cross-
pinacol coupling of two simple carbonyls still remains a
challenge.2,5a

To obtain the stereochemical information of enantioselec-
tive reductive coupling, two reactions were examined (Figure
3). The copper-catalyzed carbonyl addition of a silylboronate
to benzaldehyde 1a using trimethylsilanol as a proton source
occurred to give (S)-α-silyl-substituted benzyl alcohol 1a′ in
79% yield with 89% enantioselectivity (Figure 3A). Next, the
reaction of a stoichiometric amount of a chiral silylcopper(I)
complex, which was prepared in situ from CuCl, (S,S)-L1·
HBF4, PhMe2SiB(pin), and NaOtBu (1/1/1/2), with deu-

terated benzaldehyde-α-d1 (1a-d) was performed without any
proton sources (Figure 3B). The reaction gave, after addition
of acetic acid, chiral-deuterated benzyl silyl ether 1aC-d with
(S) configuration. The observed stereochemical outcomes
suggested that a stereodefined α-silyloxybenzylcopper(I)
intermediate (E), which is generated from the enantioselective
addition of a silylcopper(I) complex to aldehyde (B → C)
followed by [1,2]-Brook rearrangement with inversion of
configuration (C → D), reacts with arylketone 2 in a
stereospecific manner (see Figure 2C).

2.5. Reductive Coupling between Aldehydes and
Imines. To demonstrate the generality of our protocol, other
carbonyls were examined. Imines were found to be suitable
coupling partners in this reductive coupling (Table 4).15 In this
case, SIMes was a better ligand than IMes in terms of the
product yield. For example, the reaction of benzaldehyde (1a)
(0.3 mmol) and N,1-diphenylmethanimine (7a) (0.2 mmol)
with PhMe2SiB(pin) (0.3 mmol) occurred in the presence of
catalytic amounts of CuCl (10 mol %) and SIMes·HCl (10
mol %) and NaOtBu (0.22 mmol) in toluene (1 mL) at 80 °C,
followed by a desilylation, to produce the corresponding β-
amino alcohol 8aa in 74% yield.16 The NMR analysis of the
crude product confirmed no occurrence of homocoupling.
Various aldimines bearing different substituents on nitrogen or

Table 3. Enantioselective Reductive Couplinga

aReactions were carried out with 1 (0.3 mmol), 2a (0.2 mmol),
PhMe2SiBpin (0.3 mmol), CuCl (10 mol %), (S,S)-L1·HBF4 (10 mol
%), and NaOSiMe3 (0.22 mmol) in cyclooctane (1 mL) at 40 °C for
3 h. Enantiomeric excess was determined by HPLC analysis.

Figure 3. Stereochemical pathway.
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carbon atoms were evaluated. Also the steric hindrance of o-
anisyl and benzhydryl groups on imine nitrogen did not affect
the reaction efficiency (8ab and 8ac). Electron-donating and
-withdrawing groups on the aromatic ring at both aldehyde and
imine were tolerated (8ad, 8ae, 8ca, 8da, 8fa, 8ia, 8la, and
8oa). Notably, this protocol enabled the reductive coupling of
aldehyde and ketimine to construct a complex β-amino alcohol
scaffold (8af).

3. CONCLUSION
We have developed the copper-catalyzed reductive coupling of
two different carbonyls. The reaction between aromatic
aldehydes and arylketones with a silylboronate proceeded
under mild conditions to produce cross-coupled 1,2-diol
derivatives. A reaction pathway is proposed that involves the
catalytic generation of α-silyloxybenzylcopper(I) from an
aromatic aldehyde and its subsequent coupling with an
arylketone. Asymmetric reductive coupling was also achieved
with a new chiral NHC ligand on copper. This copper-
catalyzed method provides a new and efficient umpolung
strategy for the organic synthesis of 1,2-diol compounds.
Efforts to expand the utility of this reaction are ongoing in our
laboratory
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