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B-Carbon Atom as an Electrophilic Carbon
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Hayashi, Y. et al. Angew Chem. Int. Ed. 2011, 50, 3920.
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B-Carbon Atom as an Electrophilic Carbon
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B-Carbon Atom as an Electrophilic Carbon
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Wang, W. et al. Nat. Commun. 2011, 2, 211.
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B-Carbon Atom as an Electrophilic Carbon
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Enders, D. et al. Angew. Chem. Int. Ed. 2013, 52, 2977 .
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B-Carbon Atom as an Electrophilic Carbon




B-Carbon Atom as an Electrophilic Carbon

0
NHC A (10 mol%)
/\)O]\ j\/ﬁ\ Cs,COs, LiCl, 4A MS o
+
1 2 Oxidant (B) N2

R H R R THF, RT, 36 h R R

R! 0
53-98% yield

70-94% ee

Chi, Y. R. et al. Angew. Chem. Int. Ed. 2013, 52, 8588.
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B-Carbon Atom as an Electrophilic Carbon

a) single-electron-transfer (radical) mechanism:
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B-Carbon Atom as a Radical Carbon
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MacMillan, D. W. C. et al. Science 2013, 339, 1593.
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B-Carbon Atom as a Radical Carbon
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B-Carbon Atom as a Radical Carbon
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MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2013, 135, 18323.
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B-Carbon Atom as a Radical Carbon
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MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2014, 136, 6858.
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B-Carbon Atom as a Nucleophilic Carbon

1) a, B-Unsaturated ketone as electrophile:
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Chi, Y. R. et al. Nat. Chem. 2013, 5, 835.
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B-Carbon Atom as a Nucleophilic Carbon

3) Hydrazone as electrophile:
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Chi, Y. R. et al. Nat. Chem. 2013, 5, 835.
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B-Carbon Atom as a Nucleophilic Carbon
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B-Carbon Atom as a Nucleophilic Carbon

O 0] o
/O\)J\ )J\ >/Pr
(@) Pr e)
N 20 mol% NHC -CO; Ph
Q Ph,, /
Ph” Ph Ph
COPh
intermediate
ﬁ/< ° HO
- © [
S~7 N [ Ox O _Ph N0 o
A B
N i - Ph pp Ph
=\ ® = \N@ A : :
N—Mes —Ar :
C" N—d N’ o z Ph O 0” “ph
Mes 4 :
c D: Ar=Ph :  a-activation product Stetter-product
B Ar =Mes S 0%yield notobserved
N—Ar BF —Ar H: Ar = Ph, X = BF,
N—s/ ‘ N—7 I: Ar = Mes, X = BF
Ie) J: Ar = 2,4-diethylphenyl, X = CI
X K: Ar = 2,4,6-trichlorophenyl, X = Cl
F: Ar=Ph L: Ar=Ph,X=Cl
G: Ar = Mes

Chi, Y. R. et al. Angew. Chem. Int. Ed. 2014, 53, 13506.
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B-Carbon Atom as a Nucleophilic Carbon

Entry NHC Base Solvent Yield (%) Er (%)
1 A,BorC Cs,CO4 ether Oor <5 -
2 D Cs,CO4 ether <10 -
3 E Cs,CO4 ether 54 -
4 F Cs,CO, ether <10 94:6
) G Cs,CO4 ether 73 88:12
6 H Cs,CO4 ether <10 87:13
7 I Cs,CO, ether 74 81:19
8 J Cs,CO4 ether 60 81:19
9 K Cs,CO4 ether 22 98:2
10 L Cs,CO4 ether 0 -
11 K DMAP ether 28 96:4
12 K DMAP hexane 36 94:6
13 K DMAP cyclohexane 44 96:4
14 K DMAP cyclohexane 61 95:5




B-Carbon Atom as a Nucleophilic Carbon

20 mol% K
DMAP (4 equiv)

cyclohexane

K: Ar = 2,4 6-trichlorophenyl

R = Alkyl, R' = Ar, R? = Ar, 47-75% yield, 88-98% ee
R =Me, R" = Me, R? = Ph, 0% yield

R =Me, R' = Ph, R? = Et, 0% yield

R = Ar, R' = Ar, R? = Ph, 60-72% yield, 62-74% ee

20



B-Carbon Atom as a Nucleophilic Carbon
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B-Carbon Atom as a Nucleophilic Carbon
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B-Carbon Atom as a Nucleophilic Carbon
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Carbonyl compounds are readily available and inexpensive raw materials.
The direct functionalization of [ carbon atoms of saturated carbonyl
compounds can provide a shortcut for the rapid installation of useful
functional units, and therefore received intense attention in recent years.
Similar to the development of other types of inert chemical bond activations,
success in the matter came from transition metal catalysis. In recent years,
also organocatalysis was established in the area of inert chemical bond
functionalizations. The B carbon atom of a saturated carbonyl compound
can be possibly activated as a reactive electrophilic carbon, radical carbon,

or nucleophilic carbon.
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In 2011, the groups of Hayashi and Wang reported the amino-catalyzed
oxidation of saturated aldehydes to the corresponding a,B-unsaturated
iminium intermediates, in which the formal aldehyde B carbon behaved as
an electrophilic reactive carbon. With an N-heterocylic carbene (NHC) as the
organic catalyst under oxidative conditions the B carbon of a saturated
aldehyde can also be activated as an electrophilic carbon, as disclosed in
our earlier studies. MacMillan’s group has pioneered the activation of the 3
carbon of saturated aldehydes and ketones as reactive radical carbon

through amino catalysis in a single-electron transfer process.
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In summary, we have developed the first NHC-catalyzed functionalization of
carboxylic anhydrides. The [ carbon behaved as a reactive nucleophilic
carbon and underwent asymmetric reactions. With this approach,
anhydrides with B alkyl substituents work effectively. \We expect this study to
encourage further explorations in the area of inert chemical bond activations

by organocatalysis and to provide additional options for synthetic C-H bond

activations.
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