Literature Report

Rhodium-Catalyzed Intermolecular C-H Silylation of Arenes with High Steric Regiocontrol

Reporter: Mu-Wang Chen Checker: Bo Wu Date: 2015-03-31

Hartwig, J. F. et al. Science **2014**, 343, 853–857.

University of California Berkeley 1

Introduction

Buchwald-Hartwig Cross Coupling Reaction

Miyaura-Ishiyama-Hartwig Borylation

Introduction

Rhodium-Catalyzed Intermolecular C-H Silylation of Arenes with High Steric Regiocontrol

Evaluation of the Reaction Conditions for the Silylation of Arenes

$ \begin{array}{c} $							
Entry	Arene	Metal precursor	Ligand	Acceptor	T (º C)	Yield (%) ^a	
1	Benzene	[Ir(cod)OMe] ₂	dtbpy	None	80	8	
2	Benzene	[Ir(cod)OMe] ₂	Me ₄ Phen	None	80	11	
3	Benzene	[Ir(cod)OMe] ₂	2-MePhen	None	80	16	
4	Benzene	[Ir(cod)OMe] ₂	2-MePhen	Cyclohexene	80	29	
5	Benzene	[Rh(cod)Cl] ₂	dppb	Cyclohexene	80	0	
6	Benzene	[Rh(cod)Cl] ₂	dcpe	Cyclohexene	80	0	
7	Benzene	[Rh(cod)Cl] ₂	L3	Cyclohexene	80	68	

Evaluation of the Reaction Conditions for the Silylation of Arenes

Entry	Arene	Metal precursor	Ligand	Acceptor	T (º C)	Yield (%)
8	1,3-Xylene	[Rh(coe) ₂ OH] ₂	L3	Cyclohexene	50	64
9	1,3-Xylene	[Rh(coe) ₂ OH] ₂	L1	Cyclohexene	50	68
10	1,3-Xylene	[Rh(coe) ₂ OH] ₂	L2	Cyclohexene	50	75
11	1,3-Xylene	[Rh(coe) ₂ OH] ₂	L2	Cyclohexene	45	92 ^b

^a Yields determined by GC analysis. ^b Yield determined by ¹H NMR spectroscopy. Reaction run with two equivalents of silane and cyclohexane

The Regioselective Silylation of Arenes

[Si] = Si(Me)(OSiMe₃)₂; [B] = Bpin, pin = 2,3-dimethyl-2,3-butanediolate (pinacolate)

The Regioselective Silylation of Arenes

Functionalization of the Arylsilane Products

Functionalization of the Arylsilane Products

Silylarenes as Useful Building Blocks

Reaction conditions: (i) [Rh(coe)₂OH]₂, **L2**, HSiMe(OTMS)₂, cyclohexene, THF; (ii) Pd(MeCN)₂Cl₂, acetone; (iii) vinyImagnesium bromide THF; (iv) NaBH₄, THF; (v) Ph₃P, I₂, imidazole, THF; (vi) morpholine, NaHB(OAc)₃, 1,2-dichloroethane; (vii) ^{*n*}BuLi, Ph₃PMeI, THF; (viii) Grubbs catalyst, methyl vinyl ketone, DCM; (ix) Pd(OAc)₂, 4-bromotoluene, triethanolamine, THF; (x) CHI₃, CrCl₂, dioxane, THF; (xi) acetophenone, MgBr₂, (^{*i*}Pr)₂NEt, DCM

Iridium-Catalyzed Silylation of Aryl C-H Bonds

Evaluation of Reaction Conditions

$(Ir(cod)OMe]_{2} (1.0 mol\%)$ $Ligand (2.2 mol\%)$ $(Si]-H (1.5 equiv), cyclohexene$ $THF, 80 ^{\circ}C$ $(Si] = SiMe(OTMS)_{2}$ $(Si]$ $1a$ (Si)							
Entry	Ligands	Conversion (%) ^a	Yield (%) ^{a,b}	1a:1b ^a			
1	L1	29	26	19:1			
2	L2	6	0	/			
3	L3	38	36	26:1			
4	L4	39	35	26:1			
5	L5	34	30	24:1			
6	L6	9	7	20:1			
7	L7	22	19	6:1			

 $^{\rm a}\, {\rm Determined}$ by GC. $^{\rm b}\, {\rm Combined}$ yield of ${\bf 1a}$ and ${\bf 1b}$

Evaluation of Reaction Conditions

Entry	Ligands	Conversion (%) ^a	Yield (%) ^{a,b}	1a:1b ^a
8	L8	31	0	/
9	L9	45	38	11:1
10 ^c	L3	53	49	26:1
11 ^{c,d}	L3	93	90	25:1

^a Determined by GC. ^b Combined yield of **1a** and **1b.** ^c Reaction run with 1 equiv of cyclohexene. ^d Reaction run at 100 °C.

C-H Silylation of Arenes

C-H Silylation of Heteroarenes

C-H Silylation of Pharmaceutical Compounds

Functionalization of Silylarene Products

Iridium-Catalyzed Intermolecular Dehydrogenative Silylation of Polycyclic Aromatic Compounds without Directing Groups

Reactivity of arenes for the current Ir-catalyzed dehydrogenative silylation

Plausible Reaction Mechanism

Boron-Catalyzed Silylative Reduction of Quinolines: Selective sp³ C–Si Bond Formation

Substrate Scope in the Silylative Reduction

Substrate Scope in the Silylative Reduction

Preliminary Mechanistic Studies

Metal-catalyzed silylation of arenes

Boron-catalyzed silylation of arenes

Methods for the selective functionalization of aromatic C–H bonds under mild, neutral conditions have synthetic applications in fields ranging from materials science to medicinal chemistry. Perhaps most important for the utility of C–H bond functionalization is the control of site selectivity. Regioselectivity in classical electrophilic aromatic substitution reactions is governed by the electronic properties of the substituents on the arene. In catalytic C–H functionalization of arenes, regiocontrol has been achieved in some cases by substituents on the arene that bind to the catalyst and direct the reaction to an ortho- or meta-C-H bond. In other cases, such as in the widely used iridium-catalyzed borylation of arenes, the regioselectivity results from the steric properties of substituents ortho to a reacting C–H bond. However, reactions that occur with selectivity derived from the steric properties of groups distal to a potential site of reactivity on arenes have been challenging to develop. Groups in these positions are assumed to have minor steric effects on a reaction site, so much so that a classical method for probing the electronic effects of an aromatic ring on a chemical reaction is to introduce substituents *meta* or *para* to a site of reactivity.

The intermolecular, rhodium-catalyzed silulation of arenes that we report here occurs under mild conditions, with arene as the limiting reagent and with regioselectivities that complement or surpass those of other arene functionalizations. Several factors lead to the selectivity and synthetic utility of the silvlation reaction. First, the silicon reagent is sterically demanding. Assuming the intermediate that cleaves the aryl C-H bond contains a silvl group on the metal, the size of the silane reagent, along with the size of the ancillary ligands, control the degree of regioselectivity. Second, two of the substituents on the silane are bound to silicon through oxygen, and a silicon heteroatom bond is typically required for many of the transformations of arylsilanes at the C–Si bond. The origin of the remote selectivity remains to be defined. However, our results suggest that a wide scope of functionalization reactions with remote regiocontrol should be achievable through judicious choice of ancillary ligands and reagents with appropriate steric bulk.