Literature Report 7

Stereodivergent Coupling of 1,3-Dienes with Aldimine Esters Enabled by Synergistic Pd and Cu Catalysis

Reporter: Zhou-Hao Zhu Checker: Yi-Xuan Ding Date: 2019-10-14

Cruz, F. A.; Dong, V. M.* J. Am. Chem. Soc. **2017**, 139, 1029

Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi, W.* J. Am. Chem. Soc. **2019**, *141*, 14554

1 Introduction

2 Stereodivergent Coupling of Aldehydes and Alkynes

3 Stereodivergent Coupling of 1,3-Dienes with Aldimine Esters

CV of Prof. Weiwei Zi

Γ

Ľ

Ľ

Background:

Weiwei Zi

□ 2002-2006	B.S., Lanzhou University (with Prof. Haoli Zhang)
⊒ 2006-2011	Ph.D., Shanghai Institute of Organic Chemistry (with
	Prof. Dawei Ma)
2011-2012	Assistant Researcher, Shanghai Institute of Organic
	Chemistry
2012-2016	Postdoctoral Associate, Department of Chemistry,
	University of California at Berkeley (with Prof. F.
	Dean Toste)
⊒ 2016-now	Professor, Institute of Elemento-Organic Chemistry,
	Nankai University

Research Interests:

- Natural Products Synthesis
- Transition-Metal Catalysis

M-H catalyzed coupling unsaturated hydrocarbons with carbon nucleophiles

Trost, B. M.* et al. J. Am. Chem. Soc. 2003, 125, 4438

Jiang, G.* et al. Angew. Chem. Int. Ed. 2017, 56, 1077

Meek, S. J.* et al. J. Am. Chem. Soc. 2017, 139, 15580

Dong, V. M.* et al. J. Am. Chem. Soc. 2017, 139, 10641

Introduction (Ni-H)

Stereodivergent Coupling of Aldehydes and Alkynes

Cruz, F. A.; Dong, V. M.* J. Am. Chem. Soc. 2017, 139, 1029

Proposed Mechanism

Optimization of the Reaction Parameters^a

a) Phosphine Substituent

Optimization of the Reaction Parameters^a

b) Ligand Scaffold, *R* = *DTBM*

^aYields determined by ¹H NMR using an internal standard. Rr's and dr's determined by ¹H NMR analysis of the crude reaction mixture. Ee's determined by SFC analysis. ^b4.5 mol% [Rh(cod)Cl]₂, 50 mol% (BuO)₂P(O)OH instead, run at 40 °C.

Substrate Scope

Substrate Scope

Stereodivergent Aldehyde-Alkyne Coupling

Stereodivergent Coupling of Dienes with Aldimine Esters

Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Zi, W.* J. Am. Chem. Soc. 2019, 141, 14554

Proposed Mechanism

Optimization of the Reaction Parameters

Optimization of the Reaction Parameters

entry ^a	Pd cat.	Cu ligand	yield (%) ^b	dr ^b	ee (%) ^c	0 │ →······ [/] Pr
1	Pd-1	(S,S _p)- L1	53	1.6:1	95/67	
2 ^{<i>d</i>}	Pd-1	(S,S _p)- L1	<5			Fe
3	Pd-1	(S,S _p)- L2	75	2:1	95/83	(S,S _p)-L1
4	Pd-2	(S,S _p)- L2	81	4.5:1	97/95	0 I
5	Pd-3	(S,S _p)- L2	62	3.5:1	94/94	
6	Pd-4	(S,S _p)- L2	85	4.4:1	99/94	PPh ₂ Fe
7	Pd-5	(S,S _p)- L2	79	7:1	98/90	(<i>S</i> , <i>S</i> _p)-L2
8	Pd-6	(S,S _p)- L2	99	>20:1	>99/	
9	Pd-6	(<i>R</i> , <i>R_p</i>)- L2	90	1:14	/>99	Prime N
10		(S,S _p)- L2	NR			Ph ₂ P
11	Pd-6		NR			(<i>R</i> , <i>R</i> _p)-L2

^{*a*}Reaction conditions: (i) **1a** (0.2 mmol), **2a** (0.1 mmol), Pd cat. (4 mol%), Cu(MeCN)₄PF₆ (5 mol%), (S,S_p) -L or (R,R_p) -L (5.5 mol%), Et₃N (200 mol%), THF (0.5 mL), 30 °C, 36 h; (ii) citric acid (10%, 4 mL). In all cases, the regioselectivity was >20:1. ^{*b*}Determined by ¹H NMR analysis of the crude product. NR, no reaction. Isolated yields are provided in parentheses. ^{*c*}Determined by HPLC. ^{*d*}Cs₂CO₃, DBU, ^{*i*}Pr₂NEt, or DABCO was used instead of Et₃N.

Substrate Scope

R_	∼∕ ~ +		1ei)	Pd-6 (4 mol%)		
	1	<mark>Ме</mark> 2а Ar = <i>p</i> -F-C ₆ H ₄	Cu(MeCN) ₄ PF ₆ (5 mol%) R (<i>S</i> , <i>S_p</i>)- L2 (5.5 mol%) Et ₃ N (2.0 equiv), THF (0.4 M), 30 °C, 2 d ii) citric acid			H ₂ N Me (2 <i>S</i> ,3 <i>R</i>)- 3
_	entry	(2S,3R)-3	R	yield (%)	dr	ee (%)
-	1	3ba	<i>p</i> -Me-C ₆ H ₄	68	>20:1	>99
	2	3ca	m-Me-C ₆ H ₄	83	>20:1	>99
	3	3da	<i>o</i> -F-C ₆ H ₄	83	>20:1	>99
	4	3ea	<i>m</i> -F-C ₆ H ₄	82	>20:1	>99
	5	3fa	p-F-C ₆ H ₄	70	>20:1	>99
	6	3ga	p-CI-C ₆ H ₄	72	>20:1	>99
	7	3ha	<i>p</i> -CF ₃ -C ₆ H ₄	70	>20:1	>99
	8	3ia	<i>p</i> -MeO-C ₆ H ₄	78	>20:1	>99
	9	3ja	2-naphthyl	73	>20:1	>99
	10	3ka	2-furyl	69	>20:1	>99
	11	3la	2-thiophenyl	67	>20:1	>99
	12	3ma	(CH ₂) ₂ OAc	46	>20:1	93

Substrate Scope

, , , ,) ₂ Mei)	Pd-6 (6 mol%)	>		
1a	R 2 Ar = <i>p</i> -F-C ₆ H,	Cu(M (S,S Et ₃ N (2.0 equ 4	Cu(MeCN) ₄ PF ₆ (8 mol%) (S,S _p)- L2 (8.8 mol%) Et ₃ N (2.0 equiv), THF (0.8 M), 30 °C, 4 d ii) citric acid			
entry	(2S,3R)-3	R	yield (%)	dr	ee (%)	
1	3ab	Et	85	>20:1	>99	
2	3ac	<i>ⁿ</i> Pr	86	>20:1	>99	
3	3ad	<i>⁰</i> Bu	88	>20:1	>99	
4	3ae	CH_2CH_2Ph	95	>20:1	>99	
5	3af	Bn	46	>20:1	98	
6	3ag	CH ₂ CO ₂ Me	92	>20:1	>99	
7	3ah	(CH ₂) ₂ NHCbz	89	>20:1	>99	
8	3ai	(CH ₂) ₂ SMe	95	>20:1	>99	
9	3aj	allyl	59	>20:1	>99	

Stereodivergent Access to All Four Stereoisomers

Summary

Cruz, F. A.; Dong, V. M.* *J. Am. Chem. Soc.* **2017**, *139*, 1029

Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Zi, W.* J. Am. Chem. Soc. 2019, 141, 14554

The First Paragraph

As an atom-economical strategy for C-C bond formation, coupling reactions between enols/enolates and unsaturated hydrocarbons with catalysis by transition-metal hydrides (M-H) have been attracting increasing attention. These reactions are initiated by addition of M-H to the unsaturated hydrocarbon to form an electrophilic π -allyl metal intermediate, which reacts with the enolizable carbonyl compound to form a C-C bond. Substantial progress on asymmetric versions of these reactions has been made. controlling the stereochemistry when two However, contiguous stereocenters are generated by these methods remains a formidable challenge; Dong and co-workers reported the only successful example to date. These investigators developed a cooperative system involving Rh-H and Jacobsen's amine for stereodivergent coupling of aldehydes with alkynes.

Inspired by this work, as well as recent advances in Ir-catalyzed stereodivergent allylic alkylation reactions, we herein report a protocol for asymmetric coupling reactions between 1,3-dienes and aldimine esters with synergistic catalysis by Pd and Cu; all four possible stereoisomers of the coupling products could be obtained regio-, enantio-, and diastereoselectively by using various combinations of different enantiomers of the two catalysts.

In summary, we have developed a protocol for stereodivergent coupling reactions between 1,3-dienes and aldimine esters with synergistic catalysis by Pd and Cu. This protocol has a wide substrate scope and could be used to prepare all four possible stereoisomers of synthetically useful amino acid esters with two vicinal stereogenic centers (at the α - and β -positions) with high diastereo- and enantioselectivities, simply by varying the configurations of the two chiral metal catalysts. Our work represents the first example of a stereodivergent coupling reaction catalyzed by Pd-H, and insights from this study can be expected to shed light on other Pd-H related synergistic catalyses.

