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ABSTRACT: A nickel-catalyzed asymmetric allylation of
secondary phosphine oxides (SPO) for the synthesis of
tertiary phosphine oxides (TPO) was realized with high
enantioselectivity. The dynamic kinetic asymmetric trans-
formation of SPO was accomplished in the presence of
nickel complex. By elucidating the absolute configurations
of the reacted SPO starting material and the TPO
product, we confirmed that the allylation reaction
proceeded through a P-stereo retention process. The
protocol represents the first example of synthesizing P-
stereogenic phosphine oxides by allylation reaction.

Enantioenriched P-stereogenic phosphines have served as
important chiral ligands for transition metals as well as
organocatalysts." However, they are less studied compared to
their counterparts that have chiral carbon backbones, in part
due to their less availability and synthetic challenges.”
Traditional methods to synthesize P-stereogenic phosphines
require the use of stoichiometric amounts of chiral reagents;
such as methods include resolution,’ auxiliary-induced
diastereoselective substitution,* and enantioselective deproto-
nation/derivatization reactions.” Ephedrine-based strategies
are also considered as reliable and robust methods for the
preparation of P-stereogenic phosphines.4d’e

As a more efficient alternative, catalytic asymmetric synthesis
of P-stereogenic phosphines has attracted broad attention.
During the past decade, a series of inter- or intramolecular
desymmetrization reactions of prochiral phosphine derivatives
have been developed. Transition-metal-catalyzed 1,4-addition,’
[2+2+2], ring-closing metathesis,” C—H bond activation
reactions,” and N-heterocyclic carbene-catalyzed allylic alkyla-
tion and acylation reactions'® have enabled the synthesis of a
wide range of P-chiral compounds (Scheme la). The direct
coupling of secondary phosphines with various electrophiles
provided a more straightforward way to access P-chiral
compounds with diverse functional groups, e.g, transition-
metal-catalyzed alkylation,'" arylation,"”” and 1,4- and 1,6-
addition reactions'*'* (Scheme 1b). The facile interconversion
of both enantiomers of secondary phosphines under mild
conditions was one key factors to allow these reactions to
proceed through dynamic kinetic asymmetric transformation
(DYKAT),"” affording enantioenriched P-chiral compounds
from racemates. However, the toxicity and liability of
secondary phosphines have restricted their applications."

In comparison, secondary phosphine oxides (SPO), which
are bench stable, less toxic, and odorless, could serve as
promising alternatives. However, only two catalytic asymmetric
reactions of SPO for the synthesis of P-chiral compounds have
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Scheme 1. Catalytic Asymmetric Synthesis of P-Stereogenic
Phosphines
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been published. In 2016, the Gaunt group reported the first
catalytic asymmetric reaction of SPO, affording chiral TPO
efficiently with excellent enantiomeric excess (ee) (Scheme
1c)."” Shortly after, the Cai group reported a Pd-catalyzed
kinetic resolution arylation of SPO with moderate to high
enantioselectivities (Scheme 1d).'® Despite their findings,
however, 2 equiv of SPO is required either to offset the
oxidative side reaction or to secure better enantioselectivities
and yields. In addition, it is challenging to achieve the DYKAT
reaction to a large extent due to the elusive racemization of
SpO.192!

Transition-metal-catalyzed asymmetric allylic substitution
reactions have led to tremendous achievements in synthetic
organic chemistry, serving as a powerful strategy to construct
C—C and C—X bonds with chiral carbon centers.”” Among
them, only a few examples have been reported with nickel
complexes as catalysts.”®> One drawback associated with nickel
catalysis is that only hard nucleophiles which suffer from poor
functional group tolerance could deliver the products with
satisfactory enantioselectivities.”* Herein, we report our ﬁnding
on Ni-catalyzed DYKAT/KR allylation of SPO (Scheme 1e).”

We commenced our study by conducting the reaction with
phenylmethyl phosphine oxide (1a) and allylic acetate (2a) as
model substrates with Ni(cod), as catalyst. The initial
screening of achiral ligands has enabled us to realize the
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reaction under mild conditions based on the preliminary
results from the Lu group.’® The asymmetric version of the
reaction was then optimized (Table 1). At the outset of the

Table 1. Optimization of Reaction Conditions®

K;PO,, organic bases like DBU and DABCO could give 3a
with significantly increased enantio-selectivities (45%, $7%) at
>95% vield (entries 9 and 10). In the presence of a weaker
base, KOALC, the ee of 3a was increased to 71% ee (entry 11),
and it was further improved to 82% ee in diluted solution (0.05
M, entry 12). The reaction could be conducted under acidic

Ni(cod), (10 mol% .\ . . . -
g ore (g g;_‘,;gzp;““;?m,l/o ) E,/\/Ph conditions, affording 3a with better enantio-selectivity (89%
PR H +  Ph additive, dioxane 05 mL) " the ee) and 96% isolated yield (entry 13). However, substrate 1b
1 2 room temperature, 24 h 3a reacted slowly with HOAc as additive, affording 3b in 79%
(0.1 mmol) (0.12 mmol) yield and 92% ee (Table 2). Thereafter KOAc was used
Entry Ligand Additive Yield(%)" ee(%)” Table 2. Scope of Phosphine Oxides
0,
1 Ll K3PO4 15 <5 A) 9 LG Ni(cod), (10 mol%) .
2 L2 K3PO4 18 17 g TH s SRR e s P
Alkyl HOAc or KOAc (1.5 equiv) Alkyl
3 L3 K3PO4 18 30 . ) dioxane (2 mL), rt s
4 L4 K3PO4 30 53 (1.0 equiv) (1.2 equiv)
5 L5 K3POq4 >95 6
1] . e
6 L5 K3POs S1(42)  87(80) PN e oo 2w
Et Ph OBoc, 22% yield, 94% ee
9 LS DBU >95 45 79% yield, 92% ee (HOAC) p-OMeOBz, 95% yield, 94% ee 3b, 95% yield, 94% ee
10 L5 DABCO  >95 57 So% L 4% ee
11 L5 KOAc >95 71 ° o o
I n 1 1
126ef L5 KOAc >95 82 Ph"f"é/\/Ph ph X Ph Ph/T'//\/F’h I
n-Bu Bn Bn
eg n
13 L5 HOAc >95, 96 89 95% yield, 87% ee  84% yield, 81% ee  61% yield, 7% ee 7% yield, 74% ee
<= Pow @[OME e ;oo PPh, JJ 3¢ 3d 3e 3
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“Ni(cod),, (S, S)-BDPP in dioxane was stirred for 10 min, followed
by the addition of 1a, 2a, and additive (1.5 equiv). *NMR yield with
PO(OMe); as internal standard; yield of remaining la is shown in
parentheses. “Determined by chiral HPLC analysis; ee of remaining
la is shown in parentheses. “2 h. ©2 mL dioxane. /48 h. €72 h.
h .

Isolated yield.

screening, we were aware that the racemization of 1a might be
problematic and full conversion of 1a might result in decreased
enantioselectivity. Therefore, the ee of the product 3a was
detected at <50% conversion.

A series of chiral bisphosphine ligands were initially screened
(entries 1—4), among which (R)-Josiphos (L1) gave 3a in only
15% yield with marginal ee (<5%, entry 1). The reactions with
(R,R)-DiPAMP (L2), (R, R)-BPE (L3), and (S, S)-Chiraphos
(L4) as ligands gave comparable yields but with better
enantioselectivities of 17%, 30%, and 53% ee, respectively
(entries 2—4). Surprisingly, (S, S)-BDPP (LS), a close
analogue of Chiraphos, exhibited superior reactivity, affording
3a with >95% yield albeit with low ee (6%, entry S). The
reaction was then quenched at around 50% yield; to our
delight, both 3a and the remaining 1a were obtained with high
enantioselectivities (87% and 80% ee). This phenomenon
revealed that the reaction proceeded through a kinetic
resolution process. Encouraged by the result, we tried to
further achieve more promising DYKAT of SPO. We are aware
that the key factor to the success is to leverage the relative
reaction rate of the enantio-determining step with the
racemization of the remaining enantio-enriched SPO. In line
with the notion, we screened a plethora of additives to
accelerate the racemization of la while decreasing the
allylation reaction (entries 9—14, see SI). Compared to

o} o]
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Me
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“1 (0.1 mmol), 2 (0.12 mmol), Ni(cod), (10 mol%), (S, S)-BDPP
(12 mol%), KOAc (1.5 equiv), 2.0 mL dioxane, rt. LG = OAc unless
noted. %40 °C.

instead, and 3b was obtained with 94% ee and 96% isolated
yield. The enantio-selectivity of the reaction is independent of
the leaving group of the allylic ester: substrates bearing an Obz,
OBog, or p-methoxyl-Obz group all gave the desired product in
94% ee with 96%, 22%, or 95% yield, respectively. A r-allyl
nickel intermediate was probably involved, and this hypotheses
was further confirmed by the fact that linear allyl ester 2a’
could give results (95% yield and 94% ee) similar to those
obtained with 2a.

The substrate scope was investigated under standard
conditions (Table 2). A series of SPO with different alkyl
(1c—1i) or aryl (1j—1p) groups were initially tested. The steric
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hindrance of the alkyl substituent has a significant impact on
the reaction. Although these substrates (1c—1h) generally gave
high enantio-selectivities, the less sterically hindered ones were
more favorable in terms of both reactivity and enantio-
selectivity (87% to 64% ee, 3c—3h). Substrate 1i with an allyl
substituent was also compatible with the reaction, producing 3i
in 91% yield and 86% ee. A number of secondary arylethyl
phosphine oxides were then tested. Substrates with a m- or p-
methyl phenyl group (1j, 1k) reacted smoothly, affording
products 3j and 3k in 95% vyields with 91% and 89% ee,
respectively. However, substrate 11, bearing an o-methylphenyl
group, exhibited poor reactivity (27% yield at 40 °C) and gave
diminished enantio-selectivity (75% ee). The electron-
donating p-methoxyl group in substrate 1m was also
detrimental to the reactivity affording 3m in 35% yield, but
the enantio-selectivity was not influenced (92% ee). 1n with an
electron-withdrawing p-F substituent was compatible with the
conditions, affording 3n in 89% yield and 90% ee. Substrates
1o and 1p with 2-naphthyl and 2-thienyl groups also reacted
smoothly, delivering 30 and 3p in high yields (76%, 93%) and
ee values (94%, 86%).

We then investigated the scope of allylic esters with 1b as
the reaction partner (Table 3). A series of aromatic
substituents bearing electron-donating or electron-withdrawing
groups were all well tolerated, furnishing desired products
(3q—3ab) in moderate to high yields (53%—98%) with high
enantio-selectivities (83%—94% ee). Among them, the
absolute configuration of product 3t was unambiguously
determined to be R by single-crystal XRD analysis.”” Substrate
ly, with an o-Br group, could survive the nickel catalysis
condition, affording 3y in 98% yield and 88% ee. The reaction
was applicable to other aryl/heteroaryl substituents, including
1-naphthyl, 2-thienyl, and 2-pyridyl groups, producing 3ac,
3ad, and 3ae with high enantio-selectivities (90%—95% ee).
However, a pyridyl group was detrimental to the reactivity,
affording 3ae in only a modest yield (37%). Allylic ester with
an alkyl group (cyclohexyl) could also deliver the product in
78% vield and 93% ee at elevated temperature (40 °C). It
should be noted that all products were obtained with
exclusively linear selectivity and E configuration.

To investigate the origin of KR/DYKAT, we monitored the
reaction of 1b with 2z with KOAc and K;PO, as the additive
separately (Figure 1). In both cases, the ee of unreacted 2z
remained <5% throughout the reaction, and the linear
regioisomer 2z’, which was probably generated from the
nickel-catalyzed linear selective allylic substitution reaction,
was also detected (please see SI). In contrast, the variation of
ee of 1b and 3z was closely associated with the additive. When
K;PO, was used, a kinetic resolution reaction was observed.
Product 3z was detected with high ee at conversion lower than
50% or low ee at high conversion (Figure 1). In contrast, the
ee of 1b was low at lower conversion but high at higher
conversion. The selectivity factor was calculated to be 37 based
on first-order kinetics. When KOAc was used, a DYKAT
reaction was observed. Although only partial racemization of
the remaining 1b was achieved, the ee of product 3z was
substantially maintained. In both cases, the absolute config-
uration of the remaining 1b was determined to be R, as
compared with known compound by HPLC retention time.

We also performed the racemization study of 1a with each
component of the reaction (please see SI). The results showed
that the nickel(II) complex was probably responsible for the
racemization in the presence of KOAc. However, the

Table 3. Scope of Allylic Esters
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“1b (0.1 mmol), 2 (0.12 mmol), Ni(cod), (10 mol%), (S, S)-BDPP
(12 mol%), KOAc (1.5 equiv), 2.0 mL dioxane, rt. ¥40 °C.

racemization could be inhibited by K;PO,. Based on the
result above, a mechanism considering the origin of DYKAT
was proposed (Scheme 2). Under the catalysis of a nickel
complex, allylic ester 2 or 2’ could form a nickel z-allyl
intermediate, followed by enantioselective nucleophilic addi-
tion of the secondary phosphine oxide, which could be
racemized by Ni(II) complex when KOAc was used as an
additive. During the reaction, the absolute configuration of the
P-stereogenic center retained.

We also carried out the reaction on 0.5 mmol scale (Scheme
3), and product 3b was obtained in 77% yield while
maintaining the enantioselectivity (93% ee). The efficient
transformation to P-chiral phosphine—BH; adduct was also
realized without affecting the double bond geometry following
a reported procedure,” producing the desired product 4 in
one pot in 60% yield with 92% ee (Scheme 3).

DOI: 10.1021/jacs.9b08734
J. Am. Chem. Soc. 2019, 141, 16584—16589


http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08734/suppl_file/ja9b08734_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08734/suppl_file/ja9b08734_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b08734

Journal of the American Chemical Society

Communication

OAc 10 mol% Ni(cod),

CF.
9 ~ 12 mol% (S,S)-BDPP 0 /\)@/ 3
- .
P H X
Et FaC

_P.,
base, dioxane (0.05 M), it Ph™ |
3 Et

1b 2z 3z
OAc '
Z Ni(cod) Y\ li lecti N :
2, PPz PPhy  linear selective WOAC :
S,S)-BDPP ! :
FsC ©5 /\l/ FsC :
2z R = 2z |
OAc H

3 <5% ee throughout the reaction

) KyPO, us base
100 e ® ® e e 0 e e

Conversion/ee
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Scheme 2. Proposed Reaction Mechanism in Terms of
DYKAT
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In summary, we have achieved the first example of nickel-
catalyzed dynamic kinetic asymmetric transformation
(DYKAT) allylation of SPO. A series of P-stereogenic tertiary
phosphine oxides were synthesized from both racemic allylic
esters and secondary phosphine oxides (SPO). The kinetic and
racemization study revealed the origin of the DYKAT reaction
which relies on the Ni(II) catalyzed racemization of the SPO
when KOAc was used as an additive. The finding of this
research will expand the applications of SPO in the synthesis of
P-stereogenic phosphines.
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