Literature Report 3

Total Synthesis of Aplydactone

Reporter: Xiao-Yong Zhai Checker: Ji Zhou Date: 2017-07-31

Liu, C.-G.; Chen, R.-Z.; Shen, Y.; Liang, Z.-H.; Hua, Y.-H.; Zhang, Y.-D. Angew. Chem. Int. Ed. 2017, 56, 8187.

CV of Yandong Zhang

Education:

- **1994–1998** B.S., Beijing Institute of Technology
- □ 1998–1999 Research assistant, Institute of Chemistry
- **1999–2002** M.S., Peking University (Jiahua Chen)
- **2002–2004** Research assistant, Peking University (Zhen Yang)
- **2004–2008** Ph.D., Peking University (Zhen Yang)
- **2008–2010** Postdoc., Columbia University (Prof. Danishefsky)

Yandong Zhang **2011–2017** Associate Professor, Xiamen University

Research:

> Stereoselective reactions with relevance to both natural products and medicinal chemistry.

 \succ New strategies for the synthesis of terpenoid natural and unnatural products.

> Therapeutic anti-cancer/anti-HBV agent with natural products as lead compounds.

1 Introduction

2 Total Synthesis of Aplydactone by Dirk Trauner

3 Total Synthesis of Aplydactone by Yandong Zhang

Introduction

Aplydactone

Aplysia dactylomela (黑指纹海兔)

- Isolated from the Aplysia dactylomela in 2001;
- A highly strained tetracyclic framework consisting of two six-membered rings and a [2]-ladderane system ;
- The tetracycle also comprises four quaternary centers.

Stonik, V. A. et al. J. Am. Chem. Soc. 2001, 123, 504.

Introduction

Natural products isolated from Aplysia dactylomela

Dactylone (1)

Dihydroxychamigrane (2)

10-*epi*-Dactylone (**3**)

The biosynthetic relationship

Stonik, V. A. et al. J. Am. Chem. Soc. 2001, 123, 504.

Retrosynthetic analysis of Aplydactone

Trauner, D. et al. Angew. Chem. Int. Ed. 2016, 55, 11251.

Johnson–Claisen rearrangement

Methenylation of lactone 11

Poulter, C. D. et al. Tetrahedron Lett. 1977, 18, 1621.

Appel reaction

The formation of diazo ketone 18

Himbert, G. et al. Justus Liebigs Ann. Chem. 1970, 734, 70.

The formation of iodide 24

Poulter, C. D. Tetrahedron Lett. 1977, 18, 1621.

Retrosynthetic analysis of Aplydactone

Zhang, Y.-D. et al. Angew. Chem. Int. Ed. 2017, 56, 8187.

Br

Formylation/diazo transfer process

Menz, F. et al. Chem. Ber. 1968, 101, 2622.

23

Br

Wolff ring contraction

The Wolff Rearrangement allows the generation of ketenes from α diazoketones.Wolff rearrangements that are conducted in the presence of nucleophiles generate derivatives of carboxylic acids

25

Br

Bromination of a tosylhydrazone intermediate

Prabhu, K. R. et al. Org. Lett. 2015, 17, 18.

Br

Arndt–Eistert reaction

Br

Optimization of reaction conditions of C-H insertion

Entry	Catalyst	Solvent	T/ºC	Yield/% (13/2)
1	[Rh ₂ (OAc) ₄]	DCM	RT	95 (4:1)
2	[Rh ₂ (cap) ₄]	DCM	RT	95 (27:1)
3	[Rh ₂ (esp) ₂]	DCM	RT	95 (2.4:1)
4	[Rh ₂ (pfb) ₄]	DCM	RT	95 (2.5:1)
5	[Rh ₂ (tfa) ₄]	DCM	RT	95 (2.2:1)
6	[Rh ₂ (tfa) ₄]	DCM	0	95 (2.2:1)
7	[Rh ₂ (tfa) ₄]	cyclohexane	RT	86 (1.7:1)
8	[Rh ₂ (tfa) ₄]	<i>n</i> -Hexane	RT	92 (1.7:1)
9	[Rh ₂ (tfa) ₄]	<i>n</i> -Hexane	69	95 (1.5:1)

Br

Summary

- 24 Steps, 0.56% overall yield;
- The first total synthesis of aplydactone;
- Diastereoselective [2+2] cycloaddition;
- Photochemical Wolff rearrangement.

Trauner, D. et al. Angew. Chem. Int. Ed. 2016, 55, 11251.

- 12 Steps, 4.5% overall yield;
- A finely tuned conformation, supported by theoretical calculations;
- Remote C-H functionalization strategy;
- Protecting-group-free;
- HAT reaction.

The first paragraph

Aplydactone is a halogenated terpene natural product from the sea hare Aplysia dactylomela and was first disclosed by Stonik and co-workers in 2001. Structurally, aplydactone features a highly strained tetracyclic framework consisting of two six-membered rings and a [2]-ladderane system (two fused four-membered rings). Notably, the tetracycle also comprises four quaternary centers and three of them reside on the ring junctions of the four-membered rings, which are prone to a Wagner-Meerwein rearrangement induced by an adjacent carbon cation species. Although Stonik et al. assumed that aplydactone biosynthetically derived from the chamigrane sesquiterpene dactylone through an intramolecular [2+2] photocycloaddition, their preliminary attempts at this conversion failed.

The first paragraph

Collectively, the structural features, as well as uncertain biosynthetic hypothesis, make aplydactone an intriguing but challenging target for chemical synthesis.

The last paragraph

In summary, we have achieved a concise total synthesis of highly strained marine sesquiterpene aplydactone through a remote C-H functionalization strategy. Our approach relies on a transannular C-H insertion to close the cyclohexanone ring over the [2]-ladderane scaffold and HAT reaction to install the bromine-containing stereocenter. A finely tuned conformation, supported by theoretical calculations, is the key for the success of the challenging C-H insertion. To our knowledge, this is the first time that a transannular sixmembered ring C-H insertion has been successfully applied to a complex molecule synthesis. While the yield for this application is only moderate, this method enabled a protecting-group-free approach to aplydactone with decent overall efficiency.

The last paragraph

Our synthesis also demonstrates that nontraditional disconnections based on C-H functionalization in synthesis planning can not only positively influence complex molecule assembly, but also promote the discovery of otherwise difficult-to-make analogues of natural product.

Acknowledgement

