Literature Report

Asymmetric Synthesis of *α*-Amino Boronate Esters *via* Pinacolboryl Addition to Imines

Reporter: Zhong YanChecker: Xiang GaoDate:2015-12-22

- >The first successful proteasome inhibitor;
- ➤The first therapeutic agent containing boron;
- ➤Treatment of relapsed and refractory multiple myeloma.

Introduction

Classic synthetic method:

Matteson, D. S. et al. J. Am. Chem. Soc. 1981, 103, 5241.

Baker's work:

Baker, R. T. et al. Org. Lett. 2000, 2, 2105.

Morken's work:

Entry	Ligand	R	Yield (%)	Er
1	L1	Н	76	84:16
2	L2	Ме	80	89:11
3	L3	F	64	83:17
4	L4	Et	79	90:10
5	L5	ⁱ Pr	70	89:11
6	L6	Ph	71	73:27
7	L7	^t Bu	72	81:19

Morken, J. P. et al. J. Am. Chem. Soc. 2013, 135, 9252.

Ellman's work:

^{*a*} With 5 mol % of catalyst used. ^{*b*} Yields were determined by ¹H NMR of the crude material relative to 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} Diastereomeric ratio was determined by ¹⁹F NMR of the corresponding (*R*)- and (*S*)-MTPA amides.

Ellman, J. A. et al. J. Am. Chem. Soc. 2008, 130, 6910.

	R H H	(ICy)CuO ^t Bu (5 mol %) benzene, rt	HN R Bpin 2	
Entry	R	Product	Yield (%)	Dr
1	(CH ₃) ₂ CHCH ₂ -	2a	74	>98:2
2	(CH ₃) ₃ C–	2b	75	96:4
3	Cyclohexyl-	2c	81	97:3
4	PhCH ₂ -	2d	59	>98:2
5	Ph-	2e	54	99:1
6	4-MeO-Ph-	2f	57	>98:2
7	4-Cl-Ph-	2g	61	99:1
8	4-CF ₃ -Ph-	2h	66	>95:5

Sun's work:

L3

cl^Θ

Ð

cl⊖

Ð

Sun, Z. et al. J. Org. Chem. 2013, 78, 3405.

Entry	Ligand	Base	Yield (%)
1	L1	0.1 eq. of NaO ^t Bu	none
2	L2	0.1 eq. of NaO ^t Bu	none
3	L2	0.2 eq. of NaO ^t Bu	18
4	L3	0.1 eq. of NaO ^t Bu	23
5	L3	0.2 eq. of NaO ^t Bu	45
6	L4	0.1 eq. of NaO ^t Bu	65
7	L5	0.1 eq. of NaO ^t Bu	none
8	L6	0.1 eq. of NaO ^t Bu	52
9	L7	0.1 eq. of NaO ^t Bu	88

$R_{1} R_{2}^{tBu} + B_{2}pin_{2}$		Method A: CuC L7 (0.1 eq.), NaO ^t Bu	cl (0.1 eq.) ı (0.1 eq.), 48 h	^t Bu ▼ S
		Method B: L8 (0.1 eq.) NaH (0.1 eq.), 4 h toluene, rt		
Entry	R ₁	R ₂	Yield (method	d) Dr
1	(CH ₃) ₃ C-	Н	86% (A) 89% (B)	>99:1
2	PhCH ₂ -	н	85% (A) 88% (B)	98:2
3	4-Me-Ph-	н	82% (A) 84% (B)	>99:1
4	4-CI-Ph-	Н	79% (A) 86% (B)	>99:1
5	Ph-	CH ₃	48% (A) 56% (B)	71:29
6	CH ₃ CH ₂ −	CH ₃	66% (A) 75% (B)	74:26

Ellman's work:

Ellman, J. A. et al. J. Org. Chem. 2014, 79, 3671.

Cu-catalyzed pinacolboryl addition to α , β -unsaturated ketone

Santos, W. L. et al. Org. Lett. 2012, 14, 1918.

Entry	CuSO ₄ /PCy ₃	Yield (%)	Dr (2a:2b)
1	2:1	89	25:75
2	1:1	88	6:94
3	1:2	89	7:93
4	1:4	91	5:95

Liao's work:

Liao, J. et al. Org. Lett. 2015, 17, 2420.

Fernández's work:

Fernández. E. et al. Chem. Commun. 2012, 48, 3769.

	N ^{Ts}	MeOH (Cs ₂ CO ₃ ((2.5 eq.) 15 mol %)	HN Ts	
	PhH	THF	F, T, t	Ph Bpin	
Entry	T (°C)	Catalyst	t (h)	Conv. (%)	Ee (%)
1	45	а	15	87	90
2	45	b	15	88	67
3	45	С	15	99	41
4	45	d	15	33	86
5	45	е	15	40	90
6	45	f	15	55	79
7	25	а	24	56	99
8	25	С	24	45	99

Catalyst (4 mol %)

а

b

Summary

Enantiopure α -amino boronic acids and esters, owing to their substantial selectivity in the formation of reversible covalent bonds with the targeted enzyme, have emerged as a unique class of enzyme inhibitors and been used as potential therapeutic agents. In contrast to classic synthetic methods, transition-metal-catalyzed addition of bis(pinacolato)diboron to imines can be the most efficient and straightforward approach to prepare α -amino boronate derivatives. In 2008, Ellman pioneered a (ICy)Cu(I)-catalyzed borylation of chiral *N*-(*tert*-butanesulfinyl) aldimines and furnished a highly diastereoselective α -amino boronate ester. Very recently, Morken reported an asymmetric platinum(0) phosphonite catalyzed strategy which converted aldehydes into applicable N-acyl- α -amino boronates.

As important as N-acyl- α -amino boronic acids are, their preparation through enantioselective borylative addition of *N*-acylimine still remains a challenge. N-Boc-imine is a versatile and readily available starting material widely used in organic synthesis, whereas the N-Boc-protected group can be easily removed for synthetic purposes. However, catalytic asymmetric pinacolboryl addition of *N*-Boc-imines, even in a nonasymmetric fashion, has not been reported. Since literature's strategy has been proved unsuitable for enantioselective diboration of *N*-acylimine, a new and efficient catalytic approach is desirable to realize *N*-Boc-imine borylative addition. In this paper, we report a copper(I)-catalyzed pinacolboryl addition of N-Boc-imines, and high enantioselectivities were achieved by using a chiral sulfoxide phosphine ligand.

