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ABSTRACT: Annulated pyridines are ubiquitous scaf-
folds in many bioactive molecules. A highly regio- and
enantioselective Ni(0)-catalyzed endo-selective C−H
cyclization of pyridines with alkenes has been developed.
An unprecedented enantioselective C−H activation at
pyridyl 3- or 4-positions was enabled by bulky chiral N-
heterocyclic carbene ligands. This protocol provides
expedient access to a series of optically active 5,6,7,8-
tetrahydroquinolines and 5,6,7,8-tetrahydroisoquinolines,
compounds otherwise accessed with difficulty, in moder-
ate to high yields (up to 99% yield) and enantioselectiv-
ities (up to 99% ee). To our knowledge, this is the first
example of enantioselective C−H cyclization of pyridines
to chiral annulated products.

Pyridine derivatives are among the most significant
heterocyclic structural units found in pharmaceuticals

and bioactive natural products. In particular, the pyridine ring
system is the single most commonly found aromatic nitrogen
heterocycle among FDA approved medicines in the U.S.1

Moreover, they are also widely used as versatile building blocks
in organic synthesis and ligand design (Figure 1).2 Therefore,

the construction and modification of the pyridine ring
represents an important research objective. Among the many
strategies that have been investigated, the direct C−H
functionalization of pyridines3 constitutes an atom- and step-
economical method4 to access pyridine derivatives, and much
effort has been devoted to this approach.5 However, despite
recent advances in the C−H functionalization of pyridines to
deliver racemic products, methods for the enantioselective
functionalization of pyridines via a C−H activation process are
very rare6 and basically limited to functionalization at the 2-

position.7,8 Hou and co-workers developed a Sc-catalyzed
enantioselective C−H alkylation at the 6-position of 2-
substituted pyridines with terminal alkenes.6a Direct asym-
metric C−H functionalization at the 3- and 4-positions of
pyridines remains elusive. Importantly, the asymmetric C−H
cyclization of pyridines to chiral annulated pyridines has not
been reported despite the fact that chiral annulated pyridines,
such as 5,6,7,8-tetrahydroquinolines (THQ) and -tetrahydroi-
soquinolines (THIQ), are frequently encountered in bioactive
molecules and drugs (Figure 1).9

Although synthetic methods to access enantioenriched
1,2,3,4-THQs and -THIQs are well established,10 approaches
to chiral 5,6,7,8-THQs and -THIQs are very limited, and
catalytic, enantioselective methods are especially undevel-
oped.11,12 In general, catalytic asymmetric hydrogenation of
quinolines and isoquinolines tends to reduce the pyridine
moiety, and the selective hydrogenation of the carbocycle is
challenging due to the higher level of aromatic stabilization and
inefficient coordination to the metal by the carbocycle. Indeed,
enantioselectivities of up to 82% ee were recently achieved by
Kuwano and co-workers using ruthenium catalysis and
represents the state-of-the-art of the catalytic, enantioselective
synthesis of 5,6,7,8-THQs and -THIQs.12 In this context, we
envisioned that a nickel catalyzed regio- and enantioselective
C−H alkylation of easily available alkene-tethered pyridines
might serve as an efficient alternative approach to optically
active 5,6,7,8-THQs and -THIQs (Scheme 1). We were aware,
however, three formidable challenges presented in this nickel
catalyzed asymmetric process. First, the competitive olefin
isomerization of alkene substrates, which could easily occur in
the presence of nickel catalysts under harsh conditions, has to
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Figure 1. Examples of pharmaceuticals, natural products, and ligands
possessing pyridine rings.

Scheme 1. Catalytic Asymmetric Synthesis of Chiral 5,6,7,8-
THQs and 5,6,7,8-THIQs
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be suppressed.13 Second, complete site control of the
hydroarylation event at both the alkene and the pyridine
parts is nontrivial but is critical to deliver decent isolated yields
of products. Third, despite nickel being earth-abundant and
wildly applied in numerous coupling reactions,14 Ni-catalyzed
asymmetric C−H functionalization reactions have rarely been
reported.15 High levels of enantiocontrol for these reactions is
rather challenging to achieve because the reactivity of nickel
catalysts is generally highly sensitive to ligand and substrate
structure, resulting in very limited selections of viable chiral
ligands and limitations in substrate scope.16 However, we felt
that if a suitable family of ligands could be identified, the
above-mentioned challenges could be tackled and thus provide
a straightforward approach for the enantioselective construc-
tion of chiral 5,6,7,8-THQs and -THIQs.
Toward this goal, we recently developed a series of bulky

chiral N-heterocyclic carbenes (NHCs),17 namely SIPE and
ANIPE type ligands, and successfully applied them to the first
nickel catalyzed asymmetric formal C−H alkenylation of
alcohol with alkynes to form chiral allylic alcohols.18 As a
continuation of our work in this area, we report herein the first
example of the enantioselective C−H activating cyclization of
pyridines. In the newly developed chemistry, our recently
disclosed chiral NHCs enabled the Ni-catalyzed direct
asymmetric C−H alkylation at the 3- and 4-positions of
pyridines with excellent levels of regio- and enantiocontrol to
afford chiral 5,6,7,8-THQs and -THIQs from easily available
substrates.
Inspired by the seminal work on cooperative nickel−

aluminum catalysis by Nakao and Hiyama19,20 and recent
significant advances on asymmetric C−H activation of
nitrogen heterocycles using this concept from the group of
Cramer as well as Ye,8h−j we felt that aluminum-based Lewis
acid additives should coordinate to the pyridine nitrogen to
activate the pyridine ring and thus facilitate the pyridine C−H
functionalization process. We thus commenced our study by
using alkene-tethered pyridine 1a as the model substrate for
the synthesis of chiral annulated products in the presence of
Ni(cod)2, aluminum-based Lewis acid, and a chiral ligand. At
the outset, a variety of commonly used chiral phosphines and
NHC ligands were examined, none of which provided desired
product 2a (see Supporting Information (SI)). However, the
use of our previously disclosed ligand L1 in the presence of a
bulky additive MAD21 gave encouraging results, providing
pyridine C4-endo-cyclized product 2a exclusively in almost
quantitative yield and 72% ee (Table 1, entry 1). Importantly,
neither isomers from a nickel-catalyzed alkene chain walking
process nor the isomeric product of 2-position annulation was
observed. We reasoned that the large steric hindrance of MAD
shielded the pyridyl 2-position by Al−N coordination,
resulting in excellent selectivity in favor of 4-functionalization.
For the alkene tether, we rationalized that a bulky ligand on
nickel facilitates the anti-Markovnikov hydroarylation for steric
reasons. We next attempted to improve enantiocontrol by
employing bulkier ligands to further push the flanking groups
to the nickel center. While replacing the R1 methyl with a
bulkier diphenylmethyl group (L2) slightly increased enantio-
selectivity (entry 2), the change of the phenyl groups on the
2,6-substituent to 3,5-xylyl improved the enantioselectivity to
86% ee (L3, entry 3). Pleasingly, the use of our recently
developed SIPE type ligands resulted in further significant
improvements in the enantioselectivity (entries 4−6). Among
them, L4 gave the optimal result, affording product in 93% ee

and quantitative yield (entry 4). Bulkier ligand L5 further
improve the enantioselectivity to 96%, albeit with slightly lower
reactivity (entry 5). Surprisingly, a replacement of the methyl
on the R2 position by methoxy (L6) reduced both yield and
enantioselectivity (entry 6). In addition, the use of unsaturated
NHC L7 dramatically decreased the yield and enantioselec-
tivity (entry 7). It seems that both steric and electronic
properties of the ligand strongly effected on the outcome of
this nickel catalyzed reaction. Moreover, a survey of Lewis
acids suggest that MAD was superior to AlMe3 and AlEt3
(entries 8−9). Finally, control experiments in the absence of
nickel, MAD and NHCs, respectively, gave no detectable
products, supporting the critical role of each component
(entries 10−12).
With the optimized reaction conditions in hand, we first

explored the scope of this C−H cyclization using pyridine C3
tethered alkenes substrates as shown in Table 2. An array of
5,6,7,8-THIQs products with moderate to high yields, and
excellent enantioselectivities were obtained with complete
regiocontrol. Regardless of alkyl or aryl substituent on the
alkenes, only endo-annulated products on the pyridine 4-
position were obtained. The steric effect of the alkene
substituent has little influence on the performance and bulky
substituents such as 1-naphthyl (2e), 2-naphthyl (2f), tert-
butyl (2q), and other substituents with quaternary carbons
(2c,d) were all compatible. The styrene type substrates bearing
electron-donating substituents such as ethers (2a, 2g, 2i),
dimethylamine (2j), morpholine (2k), and weakly electron-
withdrawing substituents such as fluorine (2h) underwent C−
H cyclization smoothly. In some cases, the use of higher
loading of nickel catalyst, switch of ligand, or higher
temperature were required for better results. Remarkably,
substrate possessing amide group with acidic proton afforded
product in good yield and excellent enantiocontrol in the
presence of additional MAD and increased catalyst loading.
However, substrate containing ester gave a lower isolated yield
of product, accompanied by alkene isomerization of the

Table 1. Reaction Optimizationa

aReactions were performed on 0.1 mmol scale. bDetermined by GC
analysis. cDetermined by HPLC analysis with a chiral stationary
phase. dWithout Ni(cod)2.
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substrate under the higher temperatures needed for good
reactivity (2m). Notably, substrate containing pharmaceuti-
cally important heterocycles, including morpholine (2k),
benzofuran (2n), indole (2o, 2y), and pyrrole (2x), were
well tolerated. In addition to 1,1-disubstituted alkenes and
styrenes, the use of 1,3-conjugated diene (1u), cyclic
trisubstituted alkene (1v), and enamines (1x, 1y) also
delivered products with complete selectivity for the 4-position,
with good to excellent enantioselectivity. The reactions using
enamines were particularly intriguing, as it provided several
chiral amine products which are nontrivial to access (2x, 2y). A
cyclopentapyridine (2w) was formed exclusively with endo-
cyclization in high yield, albeit with moderate enantioselectiv-
ity.22 Next, we examined the effect of the pyridine substituents

on the reaction. Although a C2 substituent might be expected
to block coordination of MAD and a C3 substituent could
potentially suppress the C−H insertion of the bulky nickel
catalyst, the corresponding cyclized products (2r and 2s) were
nevertheless obtained in moderate to good yields and high
enantioselectivities. The connectivity and absolute stereo-
chemistry of 2e was determined by single crystal X-ray
diffraction.
Subsequently, we surveyed the scope of pyridine C2

tethered alkenes. We were able to obtained a series of
enantioenriched 5,6,7,8-THQ compounds (4a−f) in good to
high yields (64−90%) and excellent level of enantiocontrol
(90−99% ee) from 1,1-disubstituted alkenes. With respect to
the pyridine ring, substrates with methyl (4g) or phenyl (4h)

Table 2. Substrate Scopea

aYields of isolated products on 0.2 mmol scale. bUsing 20 mol % catalyst based on L5 and 2.4 equiv MAD at 100 °C for 72 h (x = 20). cUsing 10
mol % catalyst based on L5 at 120 °C for 48 h (x = 10). dUsing 10 mol % catalyst based on L3 at 80 °C for 48 h (x = 10). eUsing 10 mol % catalyst
based on L3 at 120 °C for 48 h (x = 10). fUsing n-heptane as solvent. gUsing AlEt3 instead of MAD.
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groups on the C5 position delivered products with high yields
and enantioselectivities. Moreover, a pyridine C4 tethered
alkene was tested (5a), and the endo-cyclized product (6a) was
obtained with high yield and moderate enantioselectivity.
Finally, we conducted the C−H cyclization reaction on a gram
scale using 1c as substrate while simultaneously decreasing
catalyst loading to 2 mol %, and the cyclized product 2c was
obtained with high yield and enantioselectivity as before,
highlighting the robustness of the method.
To obtain some mechanistic insight, we then conducted

some additional experiments. First, a deuterium-labeling
experiment using d-3a (96% D) under the standard conditions
gave 92% deuterium incorporation at the internal position of
the functionalized double bond (Scheme 2A). The kinetic

isotope effect (KIE = 2.5) was observed in an intermolecular
competition experiments, indicating the C−H cleavage step
may be the rate-determining step (Scheme 2B). Interestingly,
when we subjected 3a to the standard conditions in the
presence of 1-octene (1.0 equiv), the intermolecular para-C-H
alkylated product (7) formed in near quantitative yield and
only a trace amount of the C−H cyclization product (4a) was
observed. This result indicated that the para-C-H oxidative
addition is probably reversible and fast (Scheme 2C). In
addition, another competition experiment using two different
substrates suggested no deuterium scrambling occurred in this
reaction (Scheme 2D). On the basis of these results, we
proposed a possible catalytic cycle as shown in Scheme 2E: (1)
Sterically bulky MAD coordinates to pyridine nitrogen, which
pushes the tethered alkene close to nickel center and facilitates
the formation of an η2-alkene nickel complex A. (2) A
subsequent C−D bond cleavage via oxidative addition of Ni(0)
forms the Ni-D species B. (3) The anti-Markovnikov
hydronickelation of the alkene then give a seven-membered
ring intermediate C. (4) Finally, reductive elimination affords
the endo-annulation product and regenerates the nickel
catalyst. The use of SIPE and ANIPE type NHC ligands,
which possess both the highly electron-donating property and
highly steric hindrance nature, is apparently crucial to not only
the key C−H cleavage and reductive elimination step but also
the alkene insertion step, thus leading to excellent regio- and
enantiocontrol of this challenging nickel catalyzed C−H
alkylation.
In conclusion, we have developed the first enantioselective

C−H cyclization of pyridines. An unprecedented asymmetric
C−H alkylation at pyridyl 3- and 4-positions was achieved by
employing bulky chiral NHC ligands for the nickel catalyst.
Pyridine 2-, 3-, and 4-position tethered alkenes, including 1,1-
disubstituted alkenes, styrenes, a diene, a trisubstituted alkene,
and enamines, were all compatible with this completely endo-
selective annulation method. This protocol provides an atom-
and step-economical way to access a variety of chiral bi- and
polycyclic pyridines, including 5,6,7,8-THQs and 5,6,7,8-
THIQs, compounds otherwise difficult to access from racemic
building blocks. Wider applications of this nickel-NHC
catalysis are currently being explored in our laboratory.
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