Rhodium-Catalyzed Enantioselective Isomerization of Oxabicycles

Reporter: Jie Wang Checker: Shubo Hu Date: 2017-07-03

Yen, A.; Choo, K.-L.; Yazdi, S. K.; Franke, P. T.; Webster, R.; Franzoni, I.; Loh, C. C. J. Poblador-Bahamonde, A. I.; Lautens, M. *Angew. Chem. Int. Ed.* **2017**, *56*, 6307.

1 Introduction

2 Intramolecular ARO *via* Cycloisomerization

3 Enantioselective Isomerization of Oxabicycles

4 Summary

CV of Mark Lautens

Mark Lautens

Education:

- □ B.S., University of Guelph (1981)
- Ph.D., University of Wisconsin-Madison with Trost, B. M. (1981-1985)
- Postdoctoral Fellow., Harvard University with Evans, D. A. (1985-1987)
- □ University of Toronto (1987-2017)

Research:

- > Asymmetric catalysis with focus on rhodium, nickel
- Reactions of organosilicon and organotin compounds
- Fragmentation reactions

Intermolecular asymmetric ring opening (ARO) reactions:

Lautens, M. et al. Acc. Chem. Res. 2003, 36, 48.

Introduction

Intramolecular ARO

Lautens, M. et al. Angew. Chem. Int. Ed. 2016, 55, 10074.

Evaluation Conditions

	OH Rh complex (x mo (S,R)-PPF-P ^t Bu ₂ (y solvent, T	ol%) mol%) H,,,,,	ОН	PPh_2 P^tBu Fe S,R)-PPF- P^tBu_2	
entry	[Rh]/L (x/y)	solvent	T (°C)	yield (%)	ee (%)
1	[Rh(cod)Cl] ₂ /L (4/8)	THF	80	22	ND
2	[Rh(cod)OH] ₂ / L (4/8)	THF	80	5	ND
3	Rh(cod) ₂ OTf/ L (5/6)	THF	80	>99	98
4	[Rh(cod)Cl] ₂ / L (4/8) AgOTf, TBAI	THF	80	25	ND
5	Rh(cod) ₂ OTf/ L (5/6)	DCE	80	76	98
6	Rh(cod) ₂ OTf/ L (5/6)	Dioxane	80	>99	97
7	Rh(cod) ₂ OTf/ L (5/6)	Toluene	80	>99	97
8	Rh(cod) ₂ OTf/ L (5/6)	MeCN	80	-	Decomp.
9	Rh(cod) ₂ OTf/L (5/6)	THF	50	>99	>99

Substrate Scope

Mechanistic Basis of the PKR

Substrate Scope of PKR

Control Experiments

Perturbation Experiments with ROH

	Rh(cod) ₂ OTf (5 (<i>S,R</i>)-PPF-P ^t Bu ₂ x equiv. ROH, TH	mol%) (6 mol%) F, 50 °C	O O O O O H A O PrenylO C	RO H H b
entry	ROH (equiv.)	a yield (ee)	b yield (ee)	c yield (ee)
1	NO ROH 97 (>99)		-	-
2	MeOH (5)	45 (>99)	40 (>99)	Traces
3	MeOH (20)	29 (>99)	54 (>99)	14 (97)
4	MeOH (50)	15 (>99)	59 (>99)	24 (99)
5	MeOH (100)	9 (>99)	54 (>99)	33 (97)
6	MeOH (neat)	-	39 (>99)	50 (97)
7	^t BuOH	80 (>99)	19 (>99)	-

Diastereoselective Hydrogenation

Isomerization of Oxabicycles

Lautens, M. et al. Angew. Chem. Int. Ed. 2017, 56, 6307.

Evaluation of the Catalysts

entry	[Rh]/ L (x/y)	yield (%)	ee (%)
1	Rh(cod) ₂ OTf/L (5/6)	88	96
2	[Rh(cod)Cl] ₂ /L (2.5/6)	NR	ND
3	[Rh(cod)OH] ₂ / L (2.5/6)	NR	ND
4	Rh(cod) ₂ OTf/ L (2/3)	<1	ND
5	Rh(cod) ₂ OTf/ L (3/4)	43	ND

Evaluation of the Solvents

Substrate Scope

		OR
	Rh(cod) ₂ OTf (5 mol%) (<i>R</i> , <i>S</i>)-PPF-P ^t Bu ₂ (6 mol%)	
RO	1,4-dioxane, 50 °C or 80 °C	
		RÓ

entry	R	yield (%)	ee (%)
1	CH ₃ CO	88	96
2	^t BuOCO	99	96
3	C ₆ H ₅ CO	60	99
4	4-MeOC ₆ H ₄ CO	92	>99
5	4-BrC ₆ H ₄ CO	56	>99
6	4-MeSC ₆ H ₄ CO	66	99
7	2-ThienylCO	79	99
8	C ₆ H ₅ NHCO	56	96

Substrate Scope

entry	R	yield (%)	ee (%)
1	$C_6H_5CH_2$	87	97
2	$4-BrC_6H_4CH_2$	64	97
3	$4-CF_3C_6H_4CH_2$	85	97
4	$4-(MeCOO)C_6H_4CH_2$	62	98
5	$4-MeSC_6H_4CH_2$	93	95
6	$4-MeOC_6H_4CH_2$	73	95

Gram-Scale Synthesis

1.0 g, 3.47 mmol

83% yield, 97% ee

Enantioselective Methanolysis

Epoxides in ARO

Participation of the Rhodium Catalyst

entry	[Rh]	PPF-P ^t Bu ₂	solvent	result
1	Yes	(<i>R</i> , <i>S</i>)	MeOH	63%
2	No	No	MeOH	NR
3	Yes	No	MeOH	decomposition
4	Yes	(<i>S,R</i>)	1,4-dioxane (50 eq. MeOH)	NR
5	Yes	(<i>S</i> , <i>R</i>)	MeOH	26% recovery
6	Yes	(<i>R</i> , <i>S</i>)	1,4-dioxane	80% recovery

Proposed Mechanism

Summary

The rhodium-catalyzed asymmetric ring-opening (ARO) reaction of oxabicyclic alkenes offers a facile entry into chiral hydronaphthalene frameworks that are ubiquitous motifs found in a wide variety of biologically active natural products. For this reason, the development of the ARO reaction represents an area of increasing interest by various research groups, with many new methodologies emerging over the past two decades since we first disclosed this transformation.

In summary, we have demonstrated the first rhodium catalyzed enantioselective isomerization of meso-oxabenzonorbornadienes to 1,2-naphthalene oxides. This methodology delivers potentially useful building blocks in moderate to excellent yields with consistently impressive enantioselectivities. Efforts to access enantioenriched products from the stereospecific ring-opening reactions of this class of compounds are underway in our laboratories.