Literature Report

Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic *N*-heterocycles

Reporter: Zhong YanChecker: Xiang GaoDate:2016-05-17

Harutyunyan, S. R. *et al. Science* **2016**, *352*, 433.

Harutyunyan, S. R. University of Groningen Associate professor at Stratingh institute for Chemistry (since 2013) (University of Groningen, Netherlands)

Assistant professor at Stratingh institute for Chemistry (2010-2013) (University of Groningen, Netherlands)

Senior scientist in Johnson & Johnson-Tibotec-Janssen Pharmaceutica (2007-2009) (Beerse, Belgium)

Post doctoral research with Prof. Feringa (2003-2007)

(University of Groningen, Netherlands)

Ph.D. in Organic and organometallic chemistry with Prof. Belokon (2003) (INEOS, Moscow, Russia)

Medical representative at Hoffmann-La Roche (2000) (Armenia)

M.Sc. in Pharmacology, Pharmaceutical chemistry with Prof. Saghian (1999) (Yerevan State University, Armenia)

- Ph-M: PhMgCl; PhLi; PhCeCl₂; Ph₂CuCNLi₂; Ph₂CuLi; PhI + Pd⁰ + HCO₂⁻; PhHgCl + NaBH₄
- Activation of pyridine nitrogen: CICO₂Et; PhCH₂CI; BH₃·THF; ^tBuMe₂SiOTf

Organocatalytic enantioselective conjugate addition

Adamo's work

Screening of catalysts

Ph 1a	$+ CH_3NO_2 (5.0 equiv)$	Cat. (10 mol%) K ₂ CO ₃ (5.0 equiv) toluene, rt, 48 h	O ₂ N Ph 2a	
,	HO HO \oplus Ar 3a,b: X = 0 3c-e: X = b	HO HO Br	Br [⊖] Ar 4a-c	

Entry	Cat.	Ar	Conv. (%)	ee (%)
1	3a	C_6H_5	89	78
2	3b	$2-MeOC_6H_4$	>95	76
3	3c	$2-FC_6H_4$	57	78
4	3d	$4-\text{MeOC}_6\text{H}_4$	91	69
5	3e	$4-CF_3C_6H_4$	78	83
6	4a	C_6H_5	>95	90
7	4b	$4-CF_3C_6H_4$	>95	93
8	4c	3,5-(CF ₃) ₂ C ₆ H ₃	>95	97

Entry	1	Ar	t (h)	yield (%)	ee (%)
1	1a	C_6H_5	48	80	97
2	1b	3-CIC ₆ H ₄	48	75	94
3	1c	$4-CIC_6H_4$	48	74	91
4	1d	$2,6-Cl_2C_6H_3$	48	50	77
5	1e	$3,5$ - $Cl_2C_6H_3$	48	70	93
6	1f	$2,4\text{-}\mathrm{Cl}_2\mathrm{C}_6\mathrm{H}_3$	48	75	87
7	1g	$4-MeOC_6H_4$	48	88	96
8	1h	1-pyranyl	160	80	98
9	1 i	3-indolyl	240	55	88
10	1j	2-furyl	120	65	97
11	1k	2-pyridyl	48	82	96

2m: R = Me, 91% yield, 30:70 *anti/syn*, 94% ee (*syn*) **2n**: R = Et, 98% yield, 27:73 *anti/syn*, 90% ee (*syn*) **2o**: R = Bn, 89% yield, 24:76 *anti/syn*, 80% ee (*syn*)

Rh-catalyzed enantioselective conjugate addition

Lam's work

Screening of chiral diene ligands

Possible catalytic cycle

Cu-catalyzed enantioselective conjugate addition

Harutyunyan's work

Screening of conditions

Entry	L	Solvent	Additive	T (°C)	Yield (%)	ee (%)
1	-	<i>t</i> BuOMe	-	-25	Complex mix.	-
2	L1	<i>t</i> BuOMe	-	-25	Complex mix.	-
3	-	Toluene	$BF_3 \cdot OEt_2$	-78	0	-
4	L1	Toluene	$BF_3 \cdot OEt_2$	-78	59	87
5	L1	<i>t</i> BuOMe	$BF_3 \cdot OEt_2$	-78	55	93
6	L1	CH_2CI_2	$BF_3 \cdot OEt_2$	-78	67	94
7	L1	THF	$BF_3 \cdot OEt_2$	-78	57	50
8	L1	Et ₂ O	$BF_3 \cdot OEt_2$	-78	94	96
Populations were conducted on 0.2 mmal cools using 5 mal?/ of CuPr SMs /L and 1.5 active of						

Reactions were conducted on 0.2 mmol scale using 5 mol% of CuBr·SMe₂/L, and 1.5 equiv of BF₃·OEt₂, 24 h. Reported yields are for isolated **2a**.

Screening of conditions

	D N Ph 1a	EtMgBr (1.5 equiv) CuBr•SMe₂/L 24 h		—Ph	
$R^{1} \xrightarrow{P} R^{1} \xrightarrow{I} F$	$P_{Fe} = Ph; L1$ $P_{Bu}, R^2 = Ph; L2$ $P_{Ph}, R^2 = Cy; L3$	PAr_2 $PAr_$	Ar = Ph; L6 Ar = 2-MeOCe	P - N Ar^{3} $H_4; L7$	
Entry	L	Solvent	Yield (%)	ee (%)	
1	L1	Et ₂ O	94	96	
2	L2,L6,L7	Et ₂ O	0	-	
3	L3	Et ₂ O	35	53	
4	L4	Toluene	36	91	
5	L5	Toluene	45	92	

Reactions were conducted on 0.2 mmol scale using 5 mol% of CuBr·SMe₂/L, and 1.5 equiv of BF₃·OEt₂, 24 h. Reported yields are for isolated **2a**.

Scale-up and mechanistic considerations

Scale-up and mechanistic considerations

С

(Organocatalytic enantioselective conjugate addition by Adamo

15 examples, up to 98% ee

(Rh-catalyzed enantioselective conjugate addition by Lam)

X = O, N

14 examples, up to 98% ee

Cu-catalyzed enantioselective conjugate addition by Harutyunyan

X = O, S, N

32 examples, up to 99% ee

Cy P Fe P Ph Cy Fe Cy CH₃

The majority (88%) of all known active pharmaceutical ingredients (APIs) contain functionalized heterocyclic aromatic rings with a preponderance of Ncontaining aromatic heterocycles. Furthermore, approximately half of all APIs are chiral. Because the two enantiomers of a chiral drug can exhibit markedly different bioactivity, any new chiral API must be produced as a single enantiomer. Catalytic asymmetric carbon-carbon (C-C) bond formation represents the most straightforward and atom efficient strategy for the construction of organic chiral molecules. Organometallic reagents are used in a substantial fraction of the C-C bond-forming reactions used to construct API molecules. The conjugate addition of organometallic reagents to electrondeficient substrates (Michael acceptors) has proven to be a powerful method for creating new C-C bonds in a catalytic asymmetric manner for more than 20 years.

In this context, the catalytic asymmetric addition of organometallics to conjugated alkenyl-heteroaromatic compounds represents an attractive strategy to access valuable chiral heterocyclic aromatic compounds in enantiopure form. Addition of carbon nucleophiles to conjugated vinyl-substituted heteroaromatic compounds, leading mainly to achiral molecules, is well known. In contrast, there are only a handful of reports of nucleophilic are considered.

The precise mechanism of this reaction remains under investigation, as the role of the LA additive is not clear. It seemed plausible for the LA to activate the heteroaromatic substrate toward the addition reaction. However, preliminary nuclear magnetic resonance (NMR) spectroscopic studies have revealed that new species are formed upon addition of $BF_3 \cdot OEt_2$ to each of the components of the reaction individually, indicating that the LA can modulate the reactivity of

Grignard reagents and can also be involved in the structure of the catalytically active species.