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Introduction

(+)-Rubriflordilactone A Schisandra rubriflora
ANIRIL N h

® |solated from Schisandra rubriflora in 2006
® Exhibit promising anti-HIV activity

® Seven stereocenters, complex fused ring systems and multisubstituted
arene motif in heptacyclic framework

Sun, H.-D. et al. Org. Lett. 2006, 8, 991.



Proposed Retrosynthesis
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Li's Method
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Anderson’s Method

Proposed Retrosynthesis:

Pd- Or Co-catalyzed
cyclization

4: R1= CH,CBr=CH,
5: Rl = CH,C=CH

Anderson, E. A. et al. Angew. Chem. Int. Ed. 2015, 54, 12618.



Synthesis of Key Intermediate 6
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Synthesis of Key Intermediate 6
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Synthesis of Key Intermediate 6
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Synthesis of Key Intermediate 8
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Synthesis of Key Intermediate 8
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Synthesis of Key Intermediate 8
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Synthesis of Key Intermediate 7
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Synthesis of Key Intermediate 7
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Synthesis of Key Intermediate 3
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Synthesis of Key Intermediate 3

SiMe,Bn
X 4 n-BuLi, THF -78 °C
e 85% o

CpCo(CO),, PPh;

MW (300W), PhCl o
67%

TBAF, THF

H,0,, KHCO5, MEOH
84%

61 62

l) 0sO,4, NMO,
OH acetone/Hzo

Et,SiH, ZNCl,, CH,Cl, O
77% o

Y

2) Na|O4/Si02,
CH,Cl, 85%




Completion of the Synthesis
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1: rupriflordilactone A (38%) 66 (33%)



Summary

Li's Method:

Pelectrocyclization

Aromatization

® 18 steps, 2.4% overall yield
® Key step: a one-pot 6m-electrocyclolization aromatization

Anderson’s Method:

® 20 steps, 3.3% overall yield
® Key step: palladium or cobalt-catalyzed cyclization




Chinese herbal plants of the Schisandra and Kadsura genera have
afforded a rich diversity of structurally related nortriterpenoid natural
products, which are characterized by complex fused ring systems, a high
degree of oxygenation, and densely arrayed stereochemistry. Many of
these have been found to exhibit bioactive properties, including promising
levels of anti-HIV activity. Their attractive architectures also represent a
formidable synthetic challenge, first met in 2011 by Yang and co-workers
in their synthesis of schindilactone A. This landmark achievement has
recently been complemented by an elegant asymmetric synthesis of
rubriflordilactone A by Li et al., where a pelectrocyclization was used to
assemble the challenging pentasubstituted D-ring arene; and syntheses
of the related family members schilancitrilactones B and C, and

propindilactone G.



Herein, we describe two convergent enantioselective total syntheses of
rubriflordilactone A, which are distinct from previous work in that the CDE
ring system at the heart of the natural product framework is formed in a
single tricyclization step. The two syntheses differ in the method used to
construct this CDE framework, which is achieved under either palladium
or cobalt catalysis; the products of these key cyclizations converge on a

common late-stage intermediate.



In conclusion, we have developed two synthetic strategies that achieve
enantioselective syntheses of rubriflordilactone A. These employ palladium or
cobalt catalysis to assemble the ABCDE ring system as the key framework
construction step. The routes are strategically highly convergent because their
common late-stage intermediate is just four steps from the end of the synthesis.
The modular nature of the coupling between a functionalized diyne and AB-ring
aldehydes to assemble the cyclization substrates enables a unified approach to
other members of this fascinating family of natural products, and offers a high

degree of flexibility for the synthesis of rubriflordilactone analogues.
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