Titanium-Catalyzed Radical Opening of N-Acylated Aziridines

Reporter: Jie Wang Checker: Hong-Qiang Shen Date: 2017-10-17

Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S. *J. Am. Chem. Soc.* 2017, *139*, 12141.
Zhang, Y.-Q.; Vogelsang, E.; Qu, Z.-W.; Grimme, S.; Gansäuer, A. *Angew. Chem. Int. Ed.* 2017, *56*, 12654.

3 Reductive Radical Opening of *N*-Acylaziridines

CV of Song Lin

Song Lin

Education:

- **D** B.S., Peking University (2004-2008)
- □ Ph.D., Harvard University

with Eric N. Jacobsen (2008-2013)

Postdoctoral Fellow., University of California, Berkeley with Christopher J. Chang (2013-2016)

□ Cornell University (2016)

Research:

The research in the Lin Lab lies in the broadly defined area of organic chemistry, with specific interests in electrosynthesis, asymmetric catalysis and organic materials.

Acid or base catalysis:

Wender, P. A. et al. J. Am. Chem. Soc. 2009, 131, 7528.

Yadav, V. K. et al. J. Am. Chem. Soc. 2005, 127, 16366.

Transition-metal catalysis:

Redox-Neutral Radical Opening of Aziridines

Lin, S. et al. J. Am. Chem. Soc. 2017, 139, 12141.

Evaluation Conditions

Me Me Ne	Ph + $O^{t}Bu$ Cp*TiCl ₃ (5 mol%) Zn dust (10 mol%) toluene, 22 °C Me <u>2</u> (1.5 equiv)	Bz CO_2^tBu 3
entry	variation from standard conditions	yield (%)
1	none	94
2	CpTiCl ₃ instead of Cp*TiCl ₃	20
3	Cp ₂ TiCl ₂ instead of Cp*TiCl ₃	<5
4	TiCl ₄ instead of Cp*TiCl ₃	<5
5	without Zn dust	<5
6	Mn dust instead of Zn dust	82
7	ZnCl ₂ instead of Cp*TiCl ₃ and Zn dust	<5
8	DCM instead of toluene	82
9	THF or MeCN instead of toluene	<5
10	1.0 equiv 2	92

Substrate Scope

Mechanistic Experiments

A. Stereochemical infidelity of the [3+2] cycloaddition

B. Spin trapping with TEMPO

Mechanistic Experiments

Mechanistic Experiments

C. Competition experiments using alkenes

Proposed Mechanism

15

Reductive Radical Opening of Aziridines

Gansäuer, A. et al. Angew. Chem. Int. Ed. 2017, 56, 12654.

Evaluation Conditions

Ac N Me	+ CO ₂ ^t Bu _ Ph	cat. (M-mol%) Mn, Coll∙HX THF, rt	AcHN Ph	CO₂ ^t Bu
entry	cat.	mol%	Coll•HX	yield (%)
1	Cp ₂ TiCl ₂	10	Coll•HCI	22
2	(salen)TiCl ₂	10	Coll•HCI	-
3	$(C_5H_4Me)_2TiCl_2$	10	Coll•HCI	46
4	(C ₅ H ₄ ^t Bu) ₂ TiCl ₂	10	Coll•HCI	<5
5	(C ₅ H ₄ CI) ₂ TiCl ₂	10	Coll•HCI	<5
6	$(C_5 Me_5)_2 TiCl_2$	10	Coll•HCI	80
7	$(C_5Me_5)_2TiCl_2$	10	Coll•HBr	82
8	$(C_5Me_5)_2TiCl_2$	10	Coll•HI	38
9	$(C_5 Me_5)_2 TiCl_2$	5	Coll•HBr	76

Substrate Scope

Substrate Scope

Hydrogen-atom Transfer

74%

79%

Cyclization of Aziridines

Proposed Mechanism

Summary

Lin, S. et al. J. Am. Chem. Soc. 2017, 139, 12141.

Gansäuer, A. et al. Angew. Chem. Int. Ed. 2017, 56, 12654.

Owing to the presence of nitrogen-containing motifs in the vast majority of medicinally relevant synthetic targets, the development of efficient, selective, and sustainable technologies for constructing these organic structures is of critical importance. The ring opening of aziridines represents an attractive approach for the synthesis of novel nitrogenous molecules. The tendency of these strained heterocycles to rupture at two distinct reactive sites offers unique opportunities for the efficient introduction of new functionalities.

In summary, we developed a Ti-catalyzed radical formal [3+2] cycloaddition of *N*-acylaziridines with alkenes in high yield and with complete regioselectivity. This method offers an efficient approach to the synthesis of pyrrolidines: structural motifs frequently observed in bioactive natural products, synthetic pharmaceuticals, and molecular catalysts. The overall redox-neutral reaction was achieved using a redox-relay strategy, harnessing radical intermediates for selective C-N cleavage and formation. We anticipate that this new strategy will be widely applicable for overcoming other synthetic challenges involving overall redox-neutral reactions.