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ABSTRACT: Tetrasubstituted furans were efficiently synthesized
from Fe(OAc)2-catalyzed C−H/C−H cross-dehydrogenative-coupling
(CDC) reactions of activated carbonyl methylenes with S,S-function-
alized internal olefins, that is, α-oxo ketene dithioacetals and analogues,
under oxidative conditions. β-Ketoesters, 1,3-dicarbonyls, β-keto
nitrile, and amide derivatives were used as the coupling partners.
The resultant alkylthio- and carbonyl-functionalized furans could be further transformed to diverse arylated furan derivatives and
furan-fused N-heterocycles, respectively. The control experiments have revealed a radical reaction pathway.

The furan motif is an important structural unit abundant in
many biologically active natural products, pharmaceut-

icals, and agrochemicals.1 Continuous efforts have been
devoted to the synthesis of functionalized furans and furan-
based complex molecules.2 In this regard, substituted furans
have usually been synthesized by means of the cyclization of
alkynyl- or allenyl-bearing carbonyl compounds or through
reactions between alkynes and carbonyl compounds. Thus,
transition-metal-catalyzed dehydrogenative heterocylization of
2- and 3-alkynyl enones was employed to access furan-fused
carbocycles or polysubstituted furans.3,4 Iodocyclization was
also applied for this purpose.5 Intramolecular cyclization of
propargylic alcohols afforded polysubstituted furans.6a,b Alkynyl
epoxides,7 allenyl ketones,8a allenyl or homopropargylic
alcohols,8b and allene-1,3-dicarboxylic esters8c can be used for
the same purpose. Copper-catalyzed heterocyclization of
alkynyl ketones and imines8d and phosphine-mediated
reductive condensation of γ-acyloxybutynoates8e readily yielded
furan derivatives.4a Brønsted acid catalyzed cyclization of 1,4-
diketones also gave furans.9 Transition-metal-catalyzed vinylic
C−H activation/[4 + 2] O-annulation of α-aryl enones10a and
oxidative cross-coupling of 1,3-dicarbonyl compounds or β-
ketoesters10b with internal alkynes formed functionalized
furans. α-Diazocarbonyls11a and N-tosylhydrazones11b were
used for metalloradical cyclization with alkynes to construct
polysubstituted furans. The combination of N-arylimines and
alkynylbenziodoxolones was utilized for the synthesis of
polysubstituted furans.12 A two-step reaction procedure of
aldehydes with propargylic alcohols was developed to prepare
highly substituted furans.13

Due to the ready C−H addition to olefinic CC bonds to
form dihydrofurans,14 only a limited number of olefins have
been documented for the synthesis of polysubstituted furans.
Fused furans and naphthofurans were synthesized through a

copper/P(tBu)3-mediated oxidative radical [3 + 2] cyclization
between olefins or alkynes and cyclic ketones,15a and the same
type of reactions occurred between styrenes and aryl alkyl
ketones.15b Photocatalytic reactions of styrenes and α-
chloroalkyl ketones afforded polysubstituted furans.15c Man-
ganese dioxide promoted the oxidative cyclization of enones
with 1,3-dicarbonyl compounds to give 3,4-dicarbonyl-sub-
stituted furans.15d In order to avoid formation of dihydrofurans,
functionalized olefins were usually reacted with carbonyl
compounds. Using such a synthetic strategy, 2-siloxy-1-
olefins,16a gem-difluoro olefins,16b β-nitrostyrenes,16c enami-
nes,16d 2,3-dibromo-1-propenes,16e and α,β-unsaturated carbox-
ylic acids16f have been reported for substituted furan synthesis.
Palladium-catalyzed intramolecular oxidative cycloisomerization
of 2-cinnamyl-1,3-dicarbonyls was also applied to synthesize
furan derivatives.17

Although a variety of methods have been developed for furan
synthesis, more diverse and environmentally benign procedures
are strongly desired to access highly functionalized furans. In
this context, C−H/C−H cross-dehydrogenative-coupling
(CDC) reactions18 are attractive for the establishment of a
furan backbone. Gold-catalyzed alkynylation of 1,3-dicarbonyl
compounds with terminal alkynes efficiently proceeded to
afford 3-alkynylfurans.19a Stoichiometric Ag2CO3 mediated the
same reactions to give 1,2,4-trisubstituted furans.19b Molecular
iodine effected the oxidative cross-coupling of β-ketoesters and
terminal alkynes to generate furan derivatives.19c During the
ongoing investigation of internal olefinic C−H activation,20 we
were encouraged by FeCl3·H2O-catalyzed benzofuran synthesis
from the arene C(sp2)−H/C(sp3)−H CDC reactions of
phenols and β-keto esters21 and the merits of iron catalysis22
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and reasonably envisioned that α-oxo ketene dithioacetals,23 a
class of functionalized internal olefins, might be used for the
synthesis of highly functionalized furans through direct olefinic
C(sp2)−H functionalization with the C(sp3)−H bond of a
suitable carbonyl compound. Herein, we disclose Fe(OAc)2-
catalyzed oxidative annulations of α-oxo ketene dithioacetals
with β-ketoesters and related compounds for the synthesis of
tetrasubstituted furans.
Initially, the reaction of α-benzoyl ketene di(methylthio)-

acetal (1a) with ethyl acetoacetate (2a) was conducted to
optimize the reaction conditions (eq 1) (see the Supporting

Information for details). With 2 mol % of FeCl3 as the catalyst
and 3 equiv of tert-butyl peroxybenzoate (TBPB) as the
oxidant, the reaction of 1a and 2a in a 1:3 molar ratio
proceeded in N,N-dimethylacetamide (DMA) at 120 °C for 15
h under an argon atmosphere, forming the target product, that
is, tetrasubstituted furan 3a, in 40% yield. Use of Fe(OAc)2 as
the catalyst remarkably enhanced the yield to 83%. Increasing
the loading of TBPB to 4 equiv or using 5 mol % of the catalyst
did not improve the reaction efficiency, and use of a smaller
amount of the oxidant or catalyst deteriorated the product
yield. Both di-tert-butylperoxide (DTBP) and tert-butyl hydro-
peroxide (TBHP) were not effective oxidants. Elevating the
reaction temperature to 130 °C did not enhance the yield
either. Extending the reaction time to 20 h improved the
formation of 3a (87%), which was thus isolated in 79% yield.
Under an air or oxygen atmosphere, the product yield was
lessened to 70−75%. Without the catalyst or oxidant, the
desired reaction could not efficiently proceed to form 3a (35%)
or did not occur.
Under the optimized conditions, the scope of α-oxo ketene

dithioacetals (1) was explored (Scheme 1). The analogues of
1a, that is, substituted α-benzoyl ketene dithioacetals, exhibited
various reactivities to form the target furan products of type 3
in good to excellent yields. No obvious steric effects were
observed for the methyl and methoxy-substituted α-benzoyl
ketene dithioacetal substrates, and their reactions with 2a
afforded products 3b−f (75−84%). The steric/electronic
effects were obvious among the halo-substituted α-benzoyl-
bearing substrates. m-Cl (F)- and p-Br (F)-substituted
substrates reacted with 2a to give the corresponding products
3g and 3i−k in 60−61% yields, while p-Cl-benzoyl-bearing
substrate reacted more efficiently to yield furan 3h (78%), even
reaching 75% yield from a 2 mmol scale reaction (see the SI).
4-Trifluoromethyl demonstrated an obvious negative electronic
impact on the yield of 3l (62%). The bulky α-naphthoyl moiety
exhibited a steric effect to render the formation of 3m in 65%
yield. α-Heteroaroyl ketene dithioacetals smoothly underwent
the reaction to generate 3n−p (50−70%), exhibiting various
reactivities due to the different aromaticities of the O-, S-, and
N-heteroaryl functionalities. α-Acetyl ketene di(methylthio)-
acetal exhibited a good reactivity to afford 3q (75%), whereas a
steric effect was observed in the case of using α-cyclo-
propylcarbonyl substrate, leading to the target product 3r in
50% yield. Treatment of α-ester, amide, and cyano ketene
dithioacetals with 2a under the standard conditions could give
the target products 3s−u (40−66%), respectively, demonstrat-

ing a good diversity of the present synthetic methodology. α-
Oxo ketene di(ethylthio)acetals also efficiently reacted with 2a
to form the target products 3v (70%) and 3w (74%). It is clear
that the internal olefin substrates are widely substituent
tolerant.
Next, the protocol generality was investigated by performing

the reactions of α-oxo ketene dithioacetals 1 with a variety of β-
ketoesters 2 (Scheme 2). Under the standard conditions, the
reaction of α-(4-methoxybenzoyl) ketene di(methylthio)acetal
(1f) reacted with methyl acetoacetate (2b) to yield the target
furan product 4a (82%), exhibiting a reactivity similar to that of
ethyl acetoacetate (2a) as compared to the formation of 3f
(84%) (Scheme 1). Variation of the alkyl moieties to isopropyl,
tert-butyl, and benzyl in acetoacetates 2c−e did not obviously
alter the reaction efficiency, leading to furans 4b−d (77−78%).
However, when the the bulkiness of the β-ketoester substrates
was increased, the product yields were dropped from 84% for 3f
to 70−76% for 4e−h. It should be noted that 4,4,4-
trifluoroacetoacetate (2j) also exhibited a decent reactivity to
produce 4i (73%). In the case of using unsubstituted ethyl (or
methyl) 3-oxo-3-phenylpropanoates, the steric effect from the
substituted α-benzoyl moieties was not obvious, resulting in
4j−l in 67−70% yields. However, ethyl 3-oxo-3-(2′-
chlorophenyl)propanoate (2l) showed an obvious steric effect
to deteriorate the product yield to 60% for 4m, and m- or p-
halo-substituted phenyl groups did not exhibit obvious steric/

Scheme 1. Scope of Ketene Dithioacetals 1a

aConditions: 1 (0.5 mmol), 2a (1.5 mmol), Fe(OAc)2 (0.01 mmol),
TBPB (1.5 mmol), DMA (2.0 mL), 120 °C, 0.1 MPa argon, 20 h.
Yields refer to the isolated products. b1h (2.0 mmol), 2a (6.0 mmol),
Fe(OAc)2 (0.04 mmol), TBPB (6.0 mmol), DMA (5.0 mL). c48 h.
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electronic effects on the reaction efficiency to render the
formation of 4n−s (70−74%). 3- and 4-methoxy substituents
on the aryl moiety of β-ketoesters and a 4-bromo substituent
on the benzoyl moiety of an α-oxo ketene dithioacetal lessened
the substrate reactivity to form 4t−v (60−61%). α-Acetyl
ketene di(methylthio)acetal also exhibited a decent reactivity to
interact with various β-ketoesters to give 4w−z (68−80%). α-
(Thiophene-2-carbonyl) ketene di(methylthio)acetal reacted
with 4,4,4-trifluoroacetoacetate to form 4z1 in 65% yield. It is
noteworthy that internal olefin 1f reacted with the 1,3-
dicarbonyl compound, that is, acetoacetone, under the standard
conditions to afford 3,4-dicarbonyl-tetrasubstituted furan 4z2
(67%). The molecular structures of compounds 3 and 4 were
further confirmed by the X-ray single-crystal structural
determination of compound 4j (see the SI).
In contrast to most of the known substituted furans, the

present tetrasubstituted furans 3 and 4 bear three readily
convertible functional groups, i.e., alkythio, carbonyl, and ester,
at the 2-, 3-, and 4-positions of the furan backbone. This
structural feature is highly desired for furans to be used as
organic synthons. Thus, derivation of furans 3 and 4 was
conducted by palladium-catalyzed Liebeskind−Srogl cross-
coupling reactions with arylboronic acids and condensation

with hydrazine (Scheme 3). With benzeneboronic acid and its
4-chloro, 4- and 2-methoxy, and 3-methyl-substituted ana-

logues, 2-arylated tetrasubstituted furans 5a−h were efficiently
obtained (80−93%). The condensation reactions afforded
potentially bioactive furan-fused pyridazinone derivatives24

6a−d in 50−86% yields.
To probe into the reaction mechanism addition of 3 equiv of

a radical scavenger such as 2,2,6,6-tetramethyl-1-piperidinyloxy
or 2,6-di-tert-butyl-4-methylphenol to the reaction mixture of
1a with 2a completely inhibited the reaction, suggesting a
radical pathway involved in the reaction.22 The kinetic isotope
effect experiments were explored by conducting the reactions of
1a and its deuterated form 1a[D]20e with 2a under the standard
conditions, respectively. A secondary isotope effect25 was
observed with kH/kD = 1.1, which indicates that cleavage of
the internal olefinic C−H bond in 1a is not involved in the rate-
determining step of the overall catalytic cycle. On the basis of
these results and the literature reports,26 a plausible radical
oxidative reaction mechanism is proposed (see the SI for
details).
In summary, efficient iron-catalyzed direct regioselective

radical oxidative annulation of S,S-functionalized internal
olefins with β-ketoesters and analogues has been realized to
synthesize tetrasubstituted furans. The highly functionalized
furan products can be readily transformed to 2-arylfurans and
2,3-furan-fused pyridazinones through catalytic C−S cleavage
and condensation with hydrazine, respectively. The present
protocol provides a concise and environmentally benign route
to highly functionalized furan derivatives.

Scheme 2. Scope of β-Ketoesters 2a

aConditions: 1 (0.5 mmol), 2 (1.5 mmol), Fe(OAc)2 (0.01 mmol),
TBPB (1.5 mmol), DMA (2.0 mL), 120 °C, 0.1 MPa argon, 20 h.
Yields refer to the isolated products. bFe(OAc)2 (0.05 mmol),
acetylacetone (2.0 mmol), TBPB (2.0 mmol).

Scheme 3. Derivation of Furans 3 and 4a

aConditions A: 3 or 4 (0.15 mmol), dioxane (2.0 mL). Conditions B:
3 or 4 (0.3 mmol), MeCN (2.0 mL). Yields refer to the isolated
products. bSeven days.
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