<u>Cramic</u> LETTERS

Iron-Catalyzed Oxidative C–H Functionalization of Internal Olefins for the Synthesis of Tetrasubstituted Furans

Jiang Lou,^{†,‡}[®] Quannan Wang,^{†,‡}[®] Kaikai Wu,[†][®] Ping Wu,^{†,‡}[®] and Zhengkun Yu^{*,†,§}[®]

[†]Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China [‡]University of Chinese Academy of Sciences, Beijing 100049, P. R. China

[§]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China

Supporting Information

ABSTRACT: Tetrasubstituted furans were efficiently synthesized from Fe(OAc)₂-catalyzed C–H/C–H cross-dehydrogenative-coupling (CDC) reactions of activated carbonyl methylenes with *S*,*S*-functionalized internal olefins, that is, α -oxo ketene dithioacetals and analogues, under oxidative conditions. β -Ketoesters, 1,3-dicarbonyls, β -keto nitrile, and amide derivatives were used as the coupling partners.

The resultant alkylthio- and carbonyl-functionalized furans could be further transformed to diverse arylated furan derivatives and furan-fused *N*-heterocycles, respectively. The control experiments have revealed a radical reaction pathway.

he furan motif is an important structural unit abundant in many biologically active natural products, pharmaceuticals, and agrochemicals.¹ Continuous efforts have been devoted to the synthesis of functionalized furans and furanbased complex molecules.² In this regard, substituted furans have usually been synthesized by means of the cyclization of alkynyl- or allenyl-bearing carbonyl compounds or through reactions between alkynes and carbonyl compounds. Thus, transition-metal-catalyzed dehydrogenative heterocylization of 2- and 3-alkynyl enones was employed to access furan-fused carbocycles or polysubstituted furans.^{3,4} Iodocyclization was also applied for this purpose.⁵ Intramolecular cyclization of propargylic alcohols afforded polysubstituted furans.^{6a,b} Alkynyl epoxides,⁷ allenyl ketones,⁸a allenyl or homopropargylic alcohols,⁸b and allene-1,3-dicarboxylic esters⁸c can be used for the same purpose. Copper-catalyzed heterocyclization of alkynyl ketones and $imines^{8d}$ and phosphine-mediated reductive condensation of γ -acyloxybutynoates^{8e} readily yielded furan derivatives.^{4a} Brønsted acid catalyzed cyclization of 1,4diketones also gave furans.⁹ Transition-metal-catalyzed vinylic C–H activation/[4 + 2] O-annulation of α -aryl enones^{10a} and oxidative cross-coupling of 1,3-dicarbonyl compounds or β ketoesters^{10b} with internal alkynes formed functionalized furans. α -Diazocarbonyls^{11a} and N-tosylhydrazones^{11b} were used for metalloradical cyclization with alkynes to construct polysubstituted furans. The combination of N-arylimines and alkynylbenziodoxolones was utilized for the synthesis of polysubstituted furans.¹² A two-step reaction procedure of aldehydes with propargylic alcohols was developed to prepare highly substituted furans.¹

Due to the ready C–H addition to olefinic C==C bonds to form dihydrofurans,¹⁴ only a limited number of olefins have been documented for the synthesis of polysubstituted furans. Fused furans and naphthofurans were synthesized through a

copper/P(*t*Bu)₃-mediated oxidative radical [3 + 2] cyclization between olefins or alkynes and cyclic ketones,^{15a} and the same type of reactions occurred between styrenes and aryl alkyl ketones.^{15b} Photocatalytic reactions of styrenes and α chloroalkyl ketones afforded polysubstituted furans.^{15c} Manganese dioxide promoted the oxidative cyclization of enones with 1,3-dicarbonyl compounds to give 3,4-dicarbonyl-substituted furans.^{15d} In order to avoid formation of dihydrofurans, functionalized olefins were usually reacted with carbonyl compounds. Using such a synthetic strategy, 2-siloxy-1olefins,^{16a} gem-difluoro olefins,^{16b} β -nitrostyrenes,^{16c} enamines,^{16d} 2,3-dibromo-1-propenes,^{16e} and α,β -unsaturated carboxylic acids^{16f} have been reported for substituted furan synthesis. Palladium-catalyzed intramolecular oxidative cycloisomerization of 2-cinnamyl-1,3-dicarbonyls was also applied to synthesize furan derivatives.¹⁷

Although a variety of methods have been developed for furan synthesis, more diverse and environmentally benign procedures are strongly desired to access highly functionalized furans. In this context, C–H/C–H cross-dehydrogenative-coupling (CDC) reactions¹⁸ are attractive for the establishment of a furan backbone. Gold-catalyzed alkynylation of 1,3-dicarbonyl compounds with terminal alkynes efficiently proceeded to afford 3-alkynylfurans.^{19a} Stoichiometric Ag₂CO₃ mediated the same reactions to give 1,2,4-trisubstituted furans.^{19b} Molecular iodine effected the oxidative cross-coupling of β -ketoesters and terminal alkynes to generate furan derivatives.^{19c} During the ongoing investigation of internal olefinic C–H activation,²⁰ we were encouraged by FeCl₃·H₂O-catalyzed benzofuran synthesis from the arene $C(sp^2)$ –H/C(sp³)–H CDC reactions of phenols and β -keto esters²¹ and the merits of iron catalysis²²

 Received:
 May 11, 2017

 Published:
 June 1, 2017

and reasonably envisioned that α -oxo ketene dithioacetals,²³ a class of functionalized internal olefins, might be used for the synthesis of highly functionalized furans through direct olefinic $C(sp^2)$ -H functionalization with the $C(sp^3)$ -H bond of a suitable carbonyl compound. Herein, we disclose Fe(OAc)₂-catalyzed oxidative annulations of α -oxo ketene dithioacetals with β -ketoesters and related compounds for the synthesis of tetrasubstituted furans.

Initially, the reaction of α -benzoyl ketene di(methylthio)acetal (1a) with ethyl acetoacetate (2a) was conducted to optimize the reaction conditions (eq 1) (see the Supporting

Information for details). With 2 mol % of FeCl₃ as the catalyst and 3 equiv of tert-butyl peroxybenzoate (TBPB) as the oxidant, the reaction of 1a and 2a in a 1:3 molar ratio proceeded in N,N-dimethylacetamide (DMA) at 120 °C for 15 h under an argon atmosphere, forming the target product, that is, tetrasubstituted furan 3a, in 40% yield. Use of $Fe(OAc)_2$ as the catalyst remarkably enhanced the yield to 83%. Increasing the loading of TBPB to 4 equiv or using 5 mol % of the catalyst did not improve the reaction efficiency, and use of a smaller amount of the oxidant or catalyst deteriorated the product yield. Both di-tert-butylperoxide (DTBP) and tert-butyl hydroperoxide (TBHP) were not effective oxidants. Elevating the reaction temperature to 130 °C did not enhance the yield either. Extending the reaction time to 20 h improved the formation of 3a (87%), which was thus isolated in 79% yield. Under an air or oxygen atmosphere, the product yield was lessened to 70-75%. Without the catalyst or oxidant, the desired reaction could not efficiently proceed to form 3a (35%) or did not occur.

Under the optimized conditions, the scope of α -oxo ketene dithioacetals (1) was explored (Scheme 1). The analogues of 1a, that is, substituted α -benzovl ketene dithioacetals, exhibited various reactivities to form the target furan products of type 3 in good to excellent yields. No obvious steric effects were observed for the methyl and methoxy-substituted α -benzovl ketene dithioacetal substrates, and their reactions with 2a afforded products 3b-f (75–84%). The steric/electronic effects were obvious among the halo-substituted α -benzoylbearing substrates. m-Cl (F)- and p-Br (F)-substituted substrates reacted with 2a to give the corresponding products 3g and 3i-k in 60-61% yields, while p-Cl-benzoyl-bearing substrate reacted more efficiently to yield furan 3h (78%), even reaching 75% yield from a 2 mmol scale reaction (see the SI). 4-Trifluoromethyl demonstrated an obvious negative electronic impact on the yield of **3l** (62%). The bulky α -naphthoyl moiety exhibited a steric effect to render the formation of 3m in 65% yield. α -Heteroaroyl ketene dithioacetals smoothly underwent the reaction to generate 3n-p (50–70%), exhibiting various reactivities due to the different aromaticities of the O-, S-, and *N*-heteroaryl functionalities. α -Acetyl ketene di(methylthio)acetal exhibited a good reactivity to afford 3q (75%), whereas a steric effect was observed in the case of using α -cyclopropylcarbonyl substrate, leading to the target product 3r in 50% yield. Treatment of α -ester, amide, and cyano ketene dithioacetals with 2a under the standard conditions could give the target products 3s-u (40-66%), respectively, demonstrat-

^aConditions: 1 (0.5 mmol), 2a (1.5 mmol), Fe(OAc)₂ (0.01 mmol), TBPB (1.5 mmol), DMA (2.0 mL), 120 °C, 0.1 MPa argon, 20 h. Yields refer to the isolated products. ^b1h (2.0 mmol), 2a (6.0 mmol), Fe(OAc)₂ (0.04 mmol), TBPB (6.0 mmol), DMA (5.0 mL). ^c48 h.

ing a good diversity of the present synthetic methodology. α -Oxo ketene di(ethylthio)acetals also efficiently reacted with 2a to form the target products 3v (70%) and 3w (74%). It is clear that the internal olefin substrates are widely substituent tolerant.

Next, the protocol generality was investigated by performing the reactions of α -oxo ketene dithioacetals 1 with a variety of β ketoesters 2 (Scheme 2). Under the standard conditions, the reaction of α -(4-methoxybenzoyl) ketene di(methylthio)acetal (1f) reacted with methyl acetoacetate (2b) to yield the target furan product 4a (82%), exhibiting a reactivity similar to that of ethyl acetoacetate (2a) as compared to the formation of 3f (84%) (Scheme 1). Variation of the alkyl moieties to isopropyl, *tert*-butyl, and benzyl in acetoacetates 2c-e did not obviously alter the reaction efficiency, leading to furans 4b-d (77–78%). However, when the the bulkiness of the β -ketoester substrates was increased, the product yields were dropped from 84% for 3f to 70-76% for 4e-h. It should be noted that 4,4,4trifluoroacetoacetate (2j) also exhibited a decent reactivity to produce 4i (73%). In the case of using unsubstituted ethyl (or methyl) 3-oxo-3-phenylpropanoates, the steric effect from the substituted α -benzoyl moieties was not obvious, resulting in 4j-1 in 67-70% yields. However, ethyl 3-oxo-3-(2'chlorophenyl)propanoate (2l) showed an obvious steric effect to deteriorate the product yield to 60% for 4m, and m- or phalo-substituted phenyl groups did not exhibit obvious steric/

^{*a*}Conditions: **1** (0.5 mmol), **2** (1.5 mmol), Fe(OAc)₂ (0.01 mmol), TBPB (1.5 mmol), DMA (2.0 mL), 120 °C, 0.1 MPa argon, 20 h. Yields refer to the isolated products. ^{*b*}Fe(OAc)₂ (0.05 mmol), acetylacetone (2.0 mmol), TBPB (2.0 mmol).

electronic effects on the reaction efficiency to render the formation of 4n-s (70–74%). 3- and 4-methoxy substituents on the aryl moiety of β -ketoesters and a 4-bromo substituent on the benzoyl moiety of an α -oxo ketene dithioacetal lessened the substrate reactivity to form 4t-v (60–61%). α -Acetyl ketene di(methylthio)acetal also exhibited a decent reactivity to interact with various β -ketoesters to give 4w-z (68–80%). α -(Thiophene-2-carbonyl) ketene di(methylthio)acetal reacted with 4,4,4-trifluoroacetoacetate to form 4z1 in 65% yield. It is noteworthy that internal olefin 1f reacted with the 1,3-dicarbonyl compound, that is, acetoacetone, under the standard conditions to afford 3,4-dicarbonyl-tetrasubstituted furan 4z2 (67%). The molecular structures of compounds 3 and 4 were further confirmed by the X-ray single-crystal structural determination of compound 4j (see the SI).

In contrast to most of the known substituted furans, the present tetrasubstituted furans 3 and 4 bear three readily convertible functional groups, i.e., alkythio, carbonyl, and ester, at the 2-, 3-, and 4-positions of the furan backbone. This structural feature is highly desired for furans to be used as organic synthons. Thus, derivation of furans 3 and 4 was conducted by palladium-catalyzed Liebeskind–Srogl cross-coupling reactions with arylboronic acids and condensation

with hydrazine (Scheme 3). With benzeneboronic acid and its 4-chloro, 4- and 2-methoxy, and 3-methyl-substituted ana-

^{*a*}Conditions A: 3 or 4 (0.15 mmol), dioxane (2.0 mL). Conditions B: 3 or 4 (0.3 mmol), MeCN (2.0 mL). Yields refer to the isolated products. ^{*b*}Seven days.

logues, 2-arylated tetrasubstituted furans 5a-h were efficiently obtained (80–93%). The condensation reactions afforded potentially bioactive furan-fused pyridazinone derivatives²⁴ 6a-d in 50–86% yields.

To probe into the reaction mechanism addition of 3 equiv of a radical scavenger such as 2,2,6,6-tetramethyl-1-piperidinyloxy or 2,6-di-*tert*-butyl-4-methylphenol to the reaction mixture of **1a** with **2a** completely inhibited the reaction, suggesting a radical pathway involved in the reaction.²² The kinetic isotope effect experiments were explored by conducting the reactions of **1a** and its deuterated form $\mathbf{1a}[D]^{20e}$ with **2a** under the standard conditions, respectively. A secondary isotope effect²⁵ was observed with $k_H/k_D = 1.1$, which indicates that cleavage of the internal olefinic C–H bond in **1a** is not involved in the ratedetermining step of the overall catalytic cycle. On the basis of these results and the literature reports,²⁶ a plausible radical oxidative reaction mechanism is proposed (see the SI for details).

In summary, efficient iron-catalyzed direct regioselective radical oxidative annulation of *S*,*S*-functionalized internal olefins with β -ketoesters and analogues has been realized to synthesize tetrasubstituted furans. The highly functionalized furan products can be readily transformed to 2-arylfurans and 2,3-furan-fused pyridazinones through catalytic C–S cleavage and condensation with hydrazine, respectively. The present protocol provides a concise and environmentally benign route to highly functionalized furan derivatives.

Organic Letters

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b01431.

Experimental materials and procedures, NMR of compounds, and X-ray crystallographic analysis for compound 4j (PDF)

X-ray crystallographic data for compound 4j(CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: zkyu@dicp.ac.cn.

ORCID

Jiang Lou: 0000-0002-5653-1359 Quannan Wang: 0000-0002-4136-0016 Kaikai Wu: 0000-0003-1950-5343 Ping Wu: 0000-0003-2650-9043

Zhengkun Yu: 0000-0002-9908-0017

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (21472185) and the National Basic Research Program of China (2015CB856600) for support of this research.

REFERENCES

(1) Hasegawa, F.; Niidome, K.; Migihashi, C.; Murata, M.; Negoro, T.; Matsumoto, T.; Kato, K.; Fujii, A. Bioorg. Med. Chem. Lett. 2014, 24, 4266.

(2) Kalaitzakis, D.; Triantafyllakis, M.; Ioannou, G. I.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2017, 56, 4020. (b) Hao, H. D.; Trauner, D. J. Am. Chem. Soc. 2017, 139, 4117.

(3) (a) Zhou, L.; Zhang, M.; Li, W.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 6542. (b) Chen, Z.-W.; Luo, M.-T.; Ye, D.-N.; Zhou, Z.-G.; Ye, M.; Liu, L.-X. Synth. Commun. 2014, 44, 1825.

(4) (a) Yao, Q.; Liao, Y.; Lin, L.; Lin, X. B.; Ji, J.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2016, 55, 1859. (b) Yang, J. M.; Li, Z. Q.; Li, M. L.; He, Q.; Zhu, S. F.; Zhou, Q. L. J. Am. Chem. Soc. 2017, 139, 3784. (c) Xiao, Y.; Zhang, J. L. Angew. Chem., Int. Ed. 2008, 47, 1903. (d) Pathipati, S. R.; van der Werf, A.; Eriksson, L.; Selander, N. Angew. Chem., Int. Ed. 2016, 55, 11863.

(5) Cho, C. H.; Shi, F.; Jung, D. I.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. ACS Comb. Sci. 2012, 14, 403.

(6) (a) Morcillo, S. P.; Leboeuf, D.; Bour, C.; Gandon, V. Chem. -Eur. J. 2016, 22, 16974. (b) Yoshida, M.; Ohno, S.; Shishido, K. Chem. - Eur. J. 2012, 18, 1604.

(7) (a) Wang, T.; Wang, C. H.; Zhang, J. L. Chem. Commun. 2011, 47, 5578. (b) Blanc, A.; Tenbrink, K.; Weibel, J. M.; Pale, P. J. Org. Chem. 2009, 74, 5342. (c) McDonald, M.; Schultz, C. C. J. Am. Chem. Soc. 1994, 116, 9363.

(8) (a) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195. (b) Peng, L. L.; Zhang, X.; Ma, M.; Wang, J. B. Angew. Chem., Int. Ed. 2007, 46, 1905. (c) Li, H. L.; Wang, Y.; Sun, P. P.; Luo, X. Y.; Shen, Z. L.; Deng, W. P. Chem. - Eur. J. 2016, 22, 9348. (d) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'i, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440. (e) Jung, C.-K.; Wang, J.-C.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4118.

(9) (a) Amarnath, V.; Amarnath, K. J. Org. Chem. 1995, 60, 301. (b) Mao, S.; Zhu, X.-Q.; Gao, Y.-R.; Guo, D.-D.; Wang, Y.-Q. Chem. -Eur. J. 2015, 21, 11335.

(10) (a) Zhao, Y. S.; Li, S. Q.; Zheng, X. S.; Tang, J. B.; She, Z. J.; Gao, G.; You, J. S. Angew. Chem., Int. Ed. 2017, 56, 4286. (b) Roslan, I.

I.; Sun, J.; Chuah, G.-K.; Jaenicke, S. Adv. Synth. Catal. 2015, 357, 719. (11) (a) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.; Zhang, X. P. J. Am. Chem. Soc. 2012, 134, 19981. (b) Huang, Y. B.; Li, X. W.; Yu, Y.; Zhu, C. L.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 5014.

(12) Lu, B. L.; Wu, J. L.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 11598

(13) Lenden, P.; Entwistle, D. A.; Willis, M. C. Angew. Chem., Int. Ed. 2011, 50, 10657.

(14) Tang, S.; Liu, K.; Long, Y.; Gao, X. L.; Gao, M.; Lei, A. W. Org. Lett. 2015, 17, 2404.

(15) (a) Naveen, Y.; Deb, A.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 1111. (b) Dey, A.; Ali, M. A.; Jana, S.; Hajra, A. J. Org. Chem. 2017, 82, 4812. (c) Wang, S.; Jia, W.-L.; Wang, L.; Liu, Q.; Wu, L.-Z. Chem. -Eur. J. 2016, 22, 13794. (d) Yue, Y. Y.; Zhang, Y. L.; Song, W. W.; Zhang, X.; Liu, J. M.; Zhuo, K. L. Adv. Synth. Catal. 2014, 356, 2459. (16) (a) Tan, W. W.; Yoshikai, N. J. Org. Chem. 2016, 81, 5566. (b) Zhang, X.; Dai, W.; Wu, W.; Cao, S. Org. Lett. 2015, 17, 2708. (c) Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015, 80, 5364. (d) Jiang, Y.; Khong, V. Z. Y.; Lourdusamy, E.; Park, C.-M. Chem. Commun. 2012, 48, 3133. (e) Schmidt, D.; Malakar, C. C.; Beifuss, U. Org. Lett. 2014, 16, 4862. (f) Yang, Y.; Yao, J.; Zhang, Y. H. Org. Lett. 2013, 15, 3206.

(17) Nallagonda, R.; Reddy, R. R.; Ghorai, P. Chem. - Eur. J. 2015, 21, 14732.

(18) (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. (b) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. W. Chem. Rev. 2015, 115, 12138. (c) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900. (19) (a) Ma, Y. H.; Zhang, S.; Yang, S. P.; Song, F. J.; You, J. S. Angew. Chem., Int. Ed. 2014, 53, 7870. (b) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H. Y.; Lei, A. W. J. Am. Chem. Soc. 2012, 134, 5766. (c) Tang, S.; Liu, K.; Long, Y.; Qi, X. T.; Lan, Y.; Lei, A. W. Chem. Commun. 2015, 51, 8769.

(20) (a) Jiang, Q. B.; Guo, T. L.; Wu, K. K.; Yu, Z. K. Chem. Commun. 2016, 52, 2913. (b) Yang, X. G.; Liu, Z. Q.; Sun, C. L.; Chen, J. P.; Yu, Z. K. Chem. - Eur. J. 2015, 21, 14085. (c) Yang, Q.; Wu, P.; Chen, J. P.; Yu, Z. K. Chem. Commun. 2014, 50, 6337. (d) Jin, W. W.; Yang, Q.; Wu, P.; Chen, J. P.; Yu, Z. K. Adv. Synth. Catal. 2014, 356, 2097. (e) Mao, Z. F.; Huang, F.; Yu, H. F.; Chen, J. P.; Yu, Z. K.; Xu, Z. Q. Chem. - Eur. J. 2014, 20, 3439. (f) Yu, H. F.; Jin, W. W.; Sun, C. L.; Chen, J. P.; Du, W. M.; He, S. B.; Yu, Z. K. Angew. Chem., Int. Ed. 2010, 49, 5792. (g) Yu, H. F.; Yu, Z. K. Angew. Chem., Int. Ed. 2009, 48, 2929.

(21) Guo, X. W.; Yu, R.; Li, H. J.; Li, Z. P. J. Am. Chem. Soc. 2009, 131, 17387.

(22) (a) Yang, X.-H.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. ChemCatChem 2016, 8, 2429. (b) Lv, L. Y.; Li, Z. P. Top. Curr. Chem. 2016, 374, 38. (c) Cera, G.; Ackermann, L. Top. Curr. Chem. 2016, 374, 57. (d) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.

(23) (a) Wang, L. D.; He, W.; Yu, Z. K. Chem. Soc. Rev. 2013, 42, 599. (b) Pan, L.; Bi, X. H.; Liu, Q. Chem. Soc. Rev. 2013, 42, 1251.

(24) (a) Singh, J.; Sharma, D.; Bansal, R. Future Med. Chem. 2017, 9, 95. (b) Saini, M.; Mehta, D. K.; Das, R.; Saini, G. Mini-Rev. Med. Chem. 2016, 16, 996.

(25) Halevi, E. A. Prog. Phys. Org. Chem. 1963, 1, 109.

(26) (a) Lv, L. Y.; Li, Z. P. Chin. J. Chem. 2017, 35, 303. (b) Bai, X. H.; Lv, L. Y.; Li, Z. P. Org. Chem. Front. 2016, 3, 804. (c) Lv, L. Y.; Li, Z. P. Org. Lett. 2016, 18, 2264. (d) Lv, L. Y.; Xi, H.; Bai, X. H.; Li, Z. P. Org. Lett. 2015, 17, 4324. (e) Lv, L. Y.; Lu, S. L.; Guo, Q. X.; Shen, B. J.; Li, Z. P. J. Org. Chem. 2015, 80, 698.