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Introduction-Bioactive Diterpenoid Alkaloids
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Wang, F.-P.; Chen, Q.-H.; Liu, X.-Y. Nat. Prod. Rep. 2010, 27, 529.




Introduction-Acoapetaludine A

R K ’
Acoapetaludine A Aconitum apetalum
B Acoapetaludine A was isolated from Aconitum apetalum in 2019.

B Acoapetaludine A bears a caged-like 6/6/6/5/6/5/6 heptacyclic system
with 11 stereocenters including three quaternary carbon centers.

B Acoapetaludine A features an additional ether ring (G-ring) integrated
within the entire polycyclic bridged skeleton.

Hu, Z.-X.; An, Q.; Tang, H.-Y.; Zhang, Y.; Hao, X.-J. Phytochemistry 2019, 167, 112111.
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Retrosynthetic Analysis
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Optimization of Reaction Conditions

Me
0
o |l HO
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e e "
7a 6a
Entry Conditions Yield (%)? Ee (%)c

1 [Rh(cod)OH]2, rt, 4 h 64 --
2 [Rh(cod)Cl]2, rt, 4 h 61 --
3 [Rh(C2H4)Cl]2, rt, 4 h -- --

aReaction conditions: 7a (0.25 mmol), ligand (0.15 equiv), metal (0.05 equiv), phenylboronic acid (3.0 equiv), KOH (0.5 equiv), dioxane (5

mL) and H,O (0.5 mL). bIsolated yield. cThe ee values determined by chiral HPLC analysis.




Optimization of Reaction Conditions
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(S)-L1 (S)-L2 (S)-L3 (S)-L4 (S)-L5
Entry Conditions Yield (%)® Ee (%)c
1 [Rh(cod)OH]2, L1, rt, 4 h -- --

2 [Rh(cod)OH]2, L1, 100 °C, 1 h 42 95
3 [Rh(C2H4)Cl]2, L1, 100 °C, 1 h 46 96
4 [Rh(C2H4)Cl]2, L1, 50 °C, 8 h 61 98
5 [Rh(C2H4)Cl]2, L2, 50 °C, 8 h 38 99
6 [Rh(C2H4)Cl]2, L3, 50 °C, 8 h 24 99
7 [Rh(C2H4)Cl]2, L4, 50 °C, 8 h -- --

8 [Rh(C2H4)Cl]2, L5, rt, 1 h 80 99

aReaction conditions: 7a (0.25 mmol), ligand (0.15 equiv), metal (0.05 equiv), phenylboronic acid (3.0 equiv), KOH (0.5 equiv), dioxane (5
mL) and H,O (0.5 mL). bIsolated yield. cThe ee values determined by chiral HPLC analysis.




Substrate Scope
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Proposed Mechanistic Pathway
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Synthesis of Acoapetaludine A
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Synthesis of Acoapetaludine A
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Synthesis of Acoapetaludine A
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Synthesis of Acoapetaludine A
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Retrosynthetic Analysis
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Synthesis of Acoapetaludine A
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Amine Oxidation
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Griffiths, R. J.; Burley, G. A.; Talbot, E. P. A. Org. Lett. 2017, 19, 870.
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Synthesis of Acoapetaludine A
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Synthesis of Acoapetaludine A
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Synthesis of Acoapetaludine A

o)

28

TFA, DMP

87%

L
o

=0 24)LiAIH, Me

Me

—_— >
76%
O
o\
)
Et
32

Cl

|
fBu\Nés\Ph 30

25) DBU

64%
1:31=1:0.22

11-epi-Acoapetaludine A (31)

20




O
Rh-Catalyzed HO
Domino Cyclization
one step = |
two rings OBz Ph Et
three C-C bonds Acoapetaludine A (1)

three stereocenters

Total synthesis of Acoapetaludine A in 25 linear steps, 0.73% overall yield.

The key steps were an unprecedented deprotection/retro-aldol/intramolecular Mannich
reaction cascade and a crucial intramolecular Diels—Alder cycloaddition

We have developed a unique strategy to enable rapid construction of highly strained
and functionalized bridged tricyclic skeletons via a Rh-catalyzed asymmetric domino
cyclization.
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Strategy for Writing The First Paragraph

» The diterpenoid alkaloids are a large class of structurally
Introduction of complex natural products mainly isolated from the Aconitum,
the diterpenoid alkaloids Consolidum, Delphinium, and Spiraea genera of plants, many of
which are widely used in traditional Chinese medicine for the
treatment of pain and cardiovascular diseases.

» Among them, acoapetaludine A (1) is a uniqgue member of the
homonapelline-type C20-diterpenoid alkaloids, featuring a
caged-like 6/6/6/5/6/5/6 heptacyclic system with 11
stereocenters including three quaternary carbon centers.
Beyond the napelline scaffold, acoapetaludine A features an

Structural feature of additional ether ring (G-ring) integrated within the entire
Acoapetaludine A polycyclic bridged skeleton, posing formidable synthetic
challenges
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Strategy for Writing The Last Paragraph

Summary

Highlights

>

In summary, we have developed a unique strategy to enable rapid
construction of highly strained and functionalized bridged tricyclic
skeletons from 2,2-disubstituted 1,3-cyclodiketones via a Rh-
catalyzed asymmetric domino cyclization. Substrates with different
ring sizes and substituents underwent this transformation assembling
a diverse array of tricyclo[6.2.1.0".6jundecanes and tricyclo[7.2.1.0"7]
dodecanes.

These bridged tricyclic molecules can serve as core scaffolds,
followed by an unprecedented deprotection/retro-aldol/intramolecular
Mannich reaction cascade and a crucial intramolecular Diels—Alder
cycloaddition, leading to a concise total synthesis of C20 diterpenoid
alkaloid acoapetaludine A (1).
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Representative Examples

® The distinct biological activity and intricate molecular architectures of diterpenoid

alkaloids render them highly sought-after targets for synthetic chemists. (intricate adij.
B ARY; MIEMERY, MFXHY; highly sought-after &3 1B#HY)

® Leveraging this insight, we plan to devise a cascade strategy for the rapid synthesis of
this common core skeleton and, building upon it, achieve the concise synthesis of this
class of natural products. (leverage n.&M}1, FE; s#H1EMA; v. RHFA (FR.
MEFF) )

® To test our hypothesis, cyclohexanedione 7a was used as the model substrate.

(hypothesis n. f¥t, R, B, B/, FIE)
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