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ABSTRACT: Disclosed here is a highly enantioselective difunc-
tionalization of azetines for convenient access to chiral 2,3-
disubstituted azetidines, a family of important scaffolds previously
lacking general access. With Cu/bisphosphine as a catalyst, two
versatile functionalities (boryl and allyl) were installed on azetine
with concomitant construction of two new stereogenic centers.
This represents a rare demonstration of Cu-catalyzed asymmetric
boryl alkylation of electron-rich olefins and C=C bonds in strained
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heterocycles. The use of allyl phosphates proved critical not only to overcome the low reactivity of the borylated alkylcuprate
intermediate toward alkylation but also to avoid competing side reactions. Remarkably, in almost all cases, single isomers were
obtained with complete regio-, enantio-, and diastereoselectivies on the azetidine motif as well as excellent control on the double
bond configuration. The mild conditions exhibited outstanding functional group compatibility and chemoselectivity. The versatile
boryl and allyl functionalities allowed for easy transformations of the products to other useful chiral azetidines previously lacking
straightforward access. Control experiments and kinetic studies indicated that the reaction proceeds by a fast boryl cupration of
azetine followed by rate-determining allylation via an intrinsically controlled Sy2’ pathway.

B INTRODUCTION

Saturated nitrogen heterocycles represent a family of the most
prevalent scaffolds in biologically active compounds.' Specif-
ically, azetidine is a uniquely privileged unit present in
numerous drug candidates and natural molecules.”” For
example, it serves as a key pharmacophore of molecules with
diverse biological activities (Scheme 1A).>” The incorporation
of this strained heterocycle is beneficial to its pharmacokinetic
properties. Moreover, chiral azetidines have also served as
useful chiral ligands or building blocks in asymmetric
synthesis.”*

Despite the broad utility of azetidines, methods for their
synthesis have been underdeveloped as compared with the
large ring homologues (e.g, pyrrolidines and piperidines),
especially in enantioenriched forms.” In particular, among
different substitution patterns, the 2,3-disubstituted azetidines
bearing two stereogenic centers are among the most
challenging to construct.”~" For a long time, the syntheses of
enantioenriched azetidines have relied on diastereomeric
induction from the existing chirality in a substrate or a
stoichiometric chiral auxiliary.”” In contrast, direct catalytic
enantioselective difunctionalization of an achiral precursor, at
both the C-2 and C-3 positions with concomitant generation
of two stereogenic centers, can be regarded as the most
convenient approach. However, multiple challenges may be
encountered in such transformations, other than achieving
good reactivity. Indeed, effective controls over chemo-
selectivity, regioselectivity, enantioselectivity, and diastereose-
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lectivity are all required. However, such an efficient protocol
remains unavailable (Scheme 1B).

In continuation of our ongoing interests in the study of
azetidines,” we envisioned a potentially general approach to
addressing the above unmet challenges (Scheme 1C). We
hypothesized that direct enantioselective boryl allylation of
azetines, a type of readily accessible substrate,'” would provide
expedient access to diverse chiral 2,3-disubstituted azetidines
since both boryl and allyl groups could be easily transformed to
other functionalities. While copper-catalyzed enantioselective
borylative difunctionalization of olefins has been established in
various contexts,"' ~"? it proved not straightforward when
applied to strained rings and electron-rich olefins."*~"” During
the preparation of this manuscript, an elegant demonstration
on strained cyclopropenes was reported by Liu and co-
workers.'> However, there has been very limited success with
strained heterocycles. The Brown laboratory pioneered a single
example of boryl arylation of an azetine by Cu/Pd cocatalysis,
but unfortunately with moderate enantioselectivity (74% ee).'”
Compared with arylation, the formation of the C(sp*)—C(sp?)
bond via alkylation with aliphatic electrophiles is expected to
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Scheme 1. (A—C) Introduction to Chiral Azetidines and Reaction Design
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Table 1. Evaluation of Conditions”
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MTBE as a solvent
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entry
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toluene as a solvent

DCM as a solvent
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Cu(CH,;CN),BF, instead of CuBr
KO'Bu instead of NaO'Bu

CuBr (S mol %), L1 (6 mol %)
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“Reaction conditions: 1a (0.05 mmol), 2a (0.07S mmol), CuBr (10 mol %), (S,S)-L1 (12 mol %), B,pin, (0.07S mmol), 1,4-dioxane (1 mL), rt, 12
h. Yield, dr, and rr values were determined by analysis of the '"H NMR spectra of the crude reaction mixture using CH,Br, as an internal standard.

The ee value was determined by chiral HPLC analysis.
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Scheme 2. Branched Allylation Scope®
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“Reaction conditions: 1a (0.4 mmol), 2 (0.6 mmol), B,pin, (0.6 mmol), NaO'Bu (0.6 mmol), CuBr (5 mol %), (S,S)-L1 (6 mol %), 1,4-dioxane (8
mL), rt, 10 h. Isolated yield. Dr and rr values were determined by 'H NMR analysis of the crude product. The ee value was determined by HPLC

on a chiral stationary phase.

be more challenging due to low reactivity. Moreover,
enantioselective difunctionalization of electron-rich double
bonds (e.g, enamines and enamides) via a borylcupration
mechanism remains largely unexplored in general.'' Herein, we
report the first highly enantioselective boryl allylation of
azetines, providing rapid access to diverse 2,3-disubstituted
azetidines with high efficiency.

B RESULTS AND DISCUSSION

Our study began with the model reaction between azetine 1a
and allylic electrophile 2a with B,pin, as the boron source
(Table 1). After a comprehensive evaluation of various
catalysts and reaction parameters, a combination of CuBr
(10 mol %), the (S,S)-Ph-BPE ligand L1 (12 mol %), and
NaO'Bu (1.5 equiv) in 1,4-dioxane at room temperature was
chosen as the standard conditions. Initial evaluation of some
allylic electrophiles bearing a bromide (Br), acetate (OAc), or

24087

carbonate (OBoc) leaving group resulted in essentially no
desired product formation (entry 1). In these cases, boryl
azetidine 1a-Bpin and allylboronate 2a-Bpin were observed as
the major products, which corroborated the challenge in
forming the C(sp*)—C(sp*) bond in this type of difunction-
alization reaction on strained electron-rich olefins. Never-
theless, to our delight, further screening indicated that
phosphate is an ideal leaving group, forming the desired
boryl allylation product 3a in high yield with excellent enantio-,
diastereo-, and regioselectivities (entries 2—3). Specifically,
with dimethylphosphate as the leaving group, 3a was formed
essentially quantitatively as a single isomer in an enantiopure
form (entry 3). A range of chiral bisphosphines and (P,N)-
ligands were also examined, but they all led to inferior results
(entry 4). For example, (S)-DTBM-Segphos L3 and (R)-Phox
L8 failed to give the desired product, whereas(S)-Binap L2,
(5,5)-QuinoxP L4, (R,S,)-Bu-Josiphos LS, (S,R,)-Josiphos L6,

https://doi.org/10.1021/jacs.5c07821
J. Am. Chem. Soc. 2025, 147, 24085—24094
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Scheme 3. Linear Allylation Scope®”
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“Reaction conditions: 1a (0.4 mmol), 4 (0.6 mmol), B,pin, (0.6 mmol), NaO'Bu (0.6 mmol), CuBr (10 mol %), (S,5)-L1 (12 mol %), 1,4-dioxane
(8 mL), rt, 10 h. Isolated yield. Isolated yield. Dr, E/Z, and rr values were determined by 'H NMR analysis of the crude product. The ee value was

determined by HPLC on a chiral stationary phase.

and (S,Sp)—iPr—Phosferrox L7 led to a significant decrease in
yield and/or selectivity. Notably, this reaction exhibited little
sensitivity to the solvent. MTBE, THF, toluene, and DCM all
gave complete control in enantio- and diastereo- and
regioselectivities (>99% ee, >20:1 dr, and >20:1 rr), with a
minor difference in reaction yield (entries S—8). Similarly,
different copper(I) sources, including CuCl and Cu-
(CH,CN),BF,, maintained the high level of selectivities, albeit
in slightly decreased yield (entries 9—10). The use of an
alternative base, such as KO'Bu, led to a lower yield as well
(entry 11). Finally, outstanding results could also be obtained
at a reduced loading of catalyst/ligand, thus establishing the
optimal conditions (entry 12). It is worth noting that this
represents the first highly enantioselective Cu-catalyzed boryl
alkylation of electron-rich olefins as well as strained
heterocyclic olefins.

With the optimized conditions, we investigated the scope of
the asymmetric boryl allylation with different 2-substituted allyl
phosphates 2, which resulted in rapid access to a range of cis-
2,3-disubstituted azetidines 3 with a branched allyl group
(Scheme 2). Allyl phosphates bearing different aryl (3a—3f)
and alkenyl (3g) substituents were all effective partners in this
three-component coupling. The structure and absolute
configuration of product 3f were unambiguously confirmed
by X-ray crystallography. In addition, the simple allyl
phosphate (31) or those bearing an alkyl substituent (3h—
3k) of varying steric demand also reacted efficiently. Notably,
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high chemoselectivity was observed in the reactions with other
heterosubstituents in the allylic position (3m—30), as they
could be potentially labile toward additional substitution. It is
remarkable that the desired products were uniformly obtained
as a single isomer in enantiopure forms in all these cases
(>99% ee, >20:1 dr, and >20:1 rr), thus highlighting the
robustness of this difunctionalization process. We also
evaluated other carbon-based electrophiles, such as simple
alkyl, propargyl, and aryl halides or phosphates. Unfortunately,
the corresponding boryl functionalization products were not
obtained (see more details in the SI).

The success of branched allylation further prompted us to
explore the more challenging linear allylation reactions since
the latter involves an additional selectivity control, i.e., E/Z
ratio regarding the double bond configuration. A range of
racemic allyl phosphates 4 bearing an allylic substituent (R?)
were examined (Scheme 3). Notably, all these cases resulted in
linear allylation products § with good to excellent site
selectivity, suggesting that the substitution was in an exclusive
Sx2' fashion. Again, all the products were formed with
uniformly outstanding stereoselectivity as a single enantiomer,
diastereomer, and regioisomer. In the presence of an additional
substituent (4i), the corresponding trisubstituted olefin 5i was
also generated with high efficiency and good stereoselectivity.
The mild conditions were compatible with different functional
groups, including alkenes, thioethers, ethers, amines, and
amides. Heterocycles could be successfully incorporated into

https://doi.org/10.1021/jacs.5c07821
J. Am. Chem. Soc. 2025, 147, 24085—24094
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Scheme 4. (A, B) Larger-Scale Reaction and Synthetic Applications”
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R = H: ent-3"-Hydroxy-DMA
R = OH: ent-3"-Hydroxy-MA

Boc

14, 45% yield

o
15, 92% yield (2 steps)

“Reagents and conditions: (a) (vinyl)MgBr, I,, NaOMe, —78 °C to rt; the Grubbs II catalyst, DCM, 60 °C. (b) Furan, n-BuLi, NBS, —78 °C to rt.
(¢) CH,Br,, n-BuLi, THF, —78 °C to rt; NaBO,4H,0, THF/H,0, rt. (d) NaBO;-4H,0, THF/H,O, rt; PPh;, CBr,, toluene, 100 °C. (e) KHF,,
MeOH/H,0, rt. (f) Pd(dppf)Cl,, Phl, Ag,0, Cs,CO;, THF/H,0, 80 °C. (g) BnBr, NaH, THF, 0 °C to rt. (h) the Grubbs II catalyst, CH,=
CHOTMS, toluene, 120 °C; K,0s0,2H,0, NalO,, NMO, ‘BuOH, H,0, rt. (i) NaClO,, NaH,PO,, H,0,, MeCN, rt.

the chiral azetidine products without an erosion in efliciency.
Of note, this reaction exhibited good chemoselectivity when
other C=C bonds were present in the substrates. Only the
electron-rich azetine motif participated in boryl allylation.
Finally, our protocol also permitted the facile modification of
bioactive and natural molecules. Specifically, allylic phosphates
derived from abietic acid, citronellal, and majantol all resulted
in the corresponding azetidines 5j—SI with good to excellent
efficiency and stereoselectivities. The application in drug-like
substrates and the potential to introduce azetidines in late-
stage optimization of properties and potency are important.
The present three-component coupling reaction permitted
the convenient introduction of two versatile functionalities to
the azetidine ring with complete absolute and relative
stereocontrol. To further demonstrate its synthetic utility, we
performed a gram-scale synthesis of azetidine 3e by the
optimized protocol (Scheme 4). Notably, the loading of CuBr
and (S,S)-L1 could be further reduced to 1 and 1.2 mol %,
respectively, to achieve equally high efficiency and stereo-
selectivity (Scheme 4A). Next, some transformations of 3e
were performed. The Zweifel olefination'® of the boronate unit
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in 3e with a vinyl Grignard reagent followed by ring-closing
metathesis provided expedient access to enantiopure
azabicyclo[3.2.0]heptane 6, a skeleton of significant medicinal
value."” The versatile boronate unit in 3e could be easily
transformed to other functionalities. For example, arylation
with furan could be achieved with high stereospecificity in the
presence of the in situ lithiated furan and NBS. Furthermore,
homologative oxidation with CH,Br, and n-BuLi smoothly
afforded alcohol 8. Alternatively, direct oxidation could lead to
a secondary alcohol, which easily underwent bromination to
form 9. The boronate could be efliciently converted to
potassium trifluoroborate salt 10. A Pd-catalyzed Heck
coupling with Phl was also successfully implemented, leading
to exclusive C—C bond formation at the olefin terminal
position but not at the Bpin unit. It could be envisioned that
these molecules could serve as precursors to other function-
alized azetidines after simple transformations. Notably, no
erosion in the high enantiopurity was observed in these
transformations.

Our protocol can also provide access to advanced
intermediates toward natural molecules (Scheme 4B). For

https://doi.org/10.1021/jacs.5c07821
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example, a large-scale synthesis of 3l followed by in situ
oxidation delivered enantiopure 3-hydroxylazetidine 12. After
protection as a benzyl ether 13, isomerization and oxidative
cleavage of the double bond resulted in aldehyde 14. Further
oxidation then provided carboxylic acid 15, an advanced
intermediate leading to various stereoisomers of mugineic
acids, known as phytosiderophores to facilitate iron uptake in
plants.””

Next, we performed experiments to gain some insight into
the reaction mechanism (Figure 1). The addition of TEMPO
did not affect the high efficiency, suggesting that this may not
be a radical pathway (Figure 1A). The use of deuterated allylic
electrophile 2b-d, resulted in 3b-d, with exclusive deuterium
incorporation at the terminal position, indicating that this
substitution is an intrinsic Sy2’ process, but not by an Sy2
pathway or via reductive elimination of a 7-allyl species, which
would lead to a mixture (Figure 1B). Furthermore, the product
ee values showed a linear correlation with those of the ligand,
thus consistent with the formation of a 1:1 adduct of the
copper salt with the chiral bidentate ligand that dictates the
enantio-determining bond formation (Figure 1C). Kinetic
studies were also studied, which indicated that this process
exhibits zeroth order in azetine and B,pin,, but first order in
electrophile 2a and the catalyst (Figure 1D).

Based on these observations, we proposed a possible
mechanism (Figure 1E). The reaction begins by forming
Cu(I)/bisphosphine complex I. Subsequent ligand exchange
driven by the formation of a stable boronate ‘BuO-Bpin
generates the Cu-Bpin species II, which undergoes migratory
insertion to the double bond of azetine 1a to form the key alkyl
cuprate III. The latter step is highly regioselective, with Bpin
added exclusively to the 3-position. The syn-addition
mechanism governs complete diastereoselectivity. The chiral
catalyst also provides effective facial discrimination. Moreover,
according to the kinetic data, this step is fast and
thermodynamically favorable. This can also be regarded as
fast saturation of the limiting Cu-Bpin species by azetine 1a,
resulting in pseudo zeroth order in 1a. The subsequent C—C
bond formation proceeds by nucleophilic attack to the less
hindered terminal of the allylic electrophile in an Sy2’ fashion,
which is a slow step due to the low reactivity of the sterically
hindered alkyl cuprate bearing an adjacent nitrogen atom.
Therefore, the proper choice of an allylic phosphate electro-
phile is critical to ensure sufficient reactivity and to avoid
competing protonation that would lead to la-Bpin. It is also
worth mentioning that the high reactivity of the azetine
substrate is also critical to avoid direct addition of Cu-Bpin
species II to the allylic electrophile, which would lead to side
product 2-Bpin. This also explains the high chemoselectivity
even in the presence of other C=C bonds in the substrates.

B CONCLUSIONS

In summary, we have developed the first highly enantiose-
lective direct difunctionalization of azetines for convenient
access to chiral 2,3-disubstituted azetidines, a family of
important scaffolds previously lacking general access. It also
represents a rare demonstration of Cu-catalyzed asymmetric
boryl alkylation of (heterosubstituted) electron-rich olefins and
C=C bonds in strained heterocycles, despite the broad utility
of this powerful olefin difunctionalization strategy. With the
proper choice of a chiral bisphosphine ligand and allyl
electrophiles, two versatile functionalities (boryl and allyl)
were installed on the valuable azetidine ring with concomitant
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construction of two new stereogenic centers. The use of allyl
phosphates proved critical not only to overcome the low
reactivity of the borylcupration intermediate toward alkylation
but also to avoid the side reactions such as direct
functionalization of the allyl electrophile without involving
azetine. It is remarkable that, in almost all the cases, single
isomers were obtained with complete control over chemo-,
regio-, enantio-, and diastereoselectivities in the azetidine motif
as well as excellent control over the double bond configuration
in the allyl group. The mild conditions exhibited outstanding
functional group compatibility as well, leaving regular C=C
bonds intact and thus showing great potential in facile
modification of complex natural and drug molecules. The
boryl and allyl units can be easily converted to other
functionalities, thereby leading to other chiral azetidines that
are not straightforward to access before. Control experiments
and kinetic studies indicated that the reaction proceeds by a
fast borylcupration of azetine followed by rate-determining
allylation via an intrinsically controlled Sy2" pathway. Further
extension of this efficient protocol is expected to address other
challenges in organic synthesis.
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